• Title/Summary/Keyword: P-M interaction

Search Result 674, Processing Time 0.028 seconds

Regulation of Gene Expression for Amino Acid Biosynthesis in the Yeast, Sacchromyces cerevisiae

  • Lea, Ho Zoo
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1995.10b
    • /
    • pp.82-82
    • /
    • 1995
  • Regulation of enzyme synthesis by transcriptional and translational control systems provides rather stable adaptation to change of amino acid level in the growth medium, while manipulation of enzyme activity through endproduct feedback inhibition represents rather short-term and reversible ways of adjusting metabolic fluctuation of amino acid level. Various control mechanisms interplay to regulate genes encoding enzymes for amino acid biosynthesis in the yeast, Sacchromyces cerevisiae. When amino acids are in short supply, genes under a cross-pathway regulatory mechanism Or general amino acid control (general control) increase their action, in which Gcn4p is the major positive regulator of gene expression. When cells are cultured in minimal medium, basal level expression is also regulated by supplementary control elements, where inorganic phosphate level is additionally involved. Most of amino acid biosynthetic genes are also regulated by the level of endproduct of the pathway. This pathway-specific regulatory mechanism is called specific amino acid control (specific controD, under which gene expression is reduced when endproduct is present in the medium. Derepression of a gene through general control can be usually overridden by repression through specific control, where the endproduct level of that particular pathway is high and not limiting. In this presentation, regulatory factors for basal level expression and general control of yeast amino acid biosynthesis will be discussed, m addition to pathway-specific repression patterns and interaction between CrOSS- and specific-control mechanisms. Preliminary results are also presented from the investigation of the cloned genes in the threonine biosynthetic pathway of the yeast. yeast.

  • PDF

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Effect of Heat Treatment on Radiation Shielding Properties of Concretes

  • Singh, Vishwanath P.;Tekin, Huseyin O.;Badiger, Nagappa M.;Manici, Tubga;Altunsoy, Elif E.
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • Background: Heat energy produced in nuclear reactors and nuclear fuel cycle facilities interactions modifies the physical properties of the shielding materials containing water content. Therefore, in the present paper, effect of the heat on shielding effectiveness of the concretes is investigated for gamma and neutron. The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors. Materials and Methods: The mass attenuation coefficients, effective atomic numbers, fast neutron removal cross-section and exposure buildup factors of ordinary and heavy concretes were investigated using NIST data of XCOM program and Geometric Progression method. Results and Discussion: The improvement in shielding effectiveness for photon and reduction in fast neutron for ordinary concrete was observed. The change in the neutron shielding effectiveness was insignificant. Conclusion: The present investigation on interaction of gamma and neutron radiation would be very useful for assessment of shielding efficiency of the concrete used in high temperature applications such as reactors.

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

HST Pixel Analysis of NGC 5195

  • Lee, Joon-Hyeop;Kim, Sang-Chul;Ree, Chang-Hee;Kyeong, Jae-Mann;Sung, Eon-Chang;Chung, Ji-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2011
  • We report the HST pixel analysis results of the interacting S0 galaxy, NGC 5195 (M51B), using the HST/ACS images in the F435W, F555W and F814W (BVI) bands. After 4x4 binning of the HST/ACS images to secure sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5195, such as blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters and blue-to-red pixel ratio. Those parameters reflect the internal properties of NGC 5195 like age, metallicity, dust content and galaxy morphology. To investigate the spatial distributions of stellar populations, we divide pixel stellar populations using the pixel color-color diagram and population synthesis models. As a result, we find that the tidal interaction with NGC 5194 significantly affects the stellar populations in their dust content and mean stellar age.

  • PDF

Bioabaibility of Oxytetracycline and Erythromycin stearate (Oxytetracycline과 Erythromycin Stearate의 생체유용성 검토)

  • Lim J.K.;Chung M.H.;Shin S.G.;Cha I.J.
    • The Korean Journal of Pharmacology
    • /
    • v.13 no.1 s.21
    • /
    • pp.1-6
    • /
    • 1977
  • The physicochemical equivalencies of drugs are not usually correlate to the generic equivalencies of drugs and the generic equivalencies of drugs produced by different manufacturers or different formulations are being called in question frequently. The bioabailability of two formulations of oxytetracycline and erythromycin stearate were performed in healthy human volunteers. At the same time, the disintegration testes were performed with randomly sampled materials in question. For the biological evaluation of new oxytetracycline formulation; tablet(250mg), two-way cross over study in 10 healthy young volunteers was performed using oxytetracycline capsule (250mg) as reference, Erythromycin stearate (250mg) tablets and capsules produced by different manufacturers were compared in a two-way cross over study in 12 subjects with same manner of oxytetracyclines. oxytetracycline tablets showed somewhat slow disintegration rate, but appeared not statistical differences in serum concentrations from the reference, up to six hours after ingestion. Erythromycin stearate capsules disintegrated more rapidly than enteric coated tablets. Serum concentrations of capsules were more variable and markedly lower (P<.005 after 2hrs) than the enteric coated tablets. Rapid disintegration of capsules may result in destruction of active chemicals owing to the interaction with gastric acid and the above factor may contribute mainly to the low serum level after ingestion of capsules.

  • PDF

CLUSTER P-V CONTAINING SYSTEMS FOR THE DECREASING OF POLYMERIC MATERIAL COMBUSTION

  • Kodolov, V.I.;Bystrov, S.G.;Mikhailov, V.I.;Lipanov, A.M.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.104-111
    • /
    • 1997
  • Cluster systems are microcrystals of vanadiumoxided compounds such as Barium, Calcium or Sodium Metavanadates or Sodium Vanadium Bronze which are distributed into dimethyl- or diethylphosphites or microcrystals of vanadium oxides, for instance, vanadium oxide (+3), distributed into the methylphosphonic acid melted. During the interaction of vanadium compounds with the correspondent phosphororganic substances biue viscous liquids are formed. These liquids have paramagnetic properties. According to the UV and IR spectroscopic investigations as well as the results of EPR spectra the substances obtained consist of the nucleus containing 6 to 12 of vanadium atoms and the shell including ligands which are molecules of phosphites or methylphosphonic acid. Here every atom of vanadium interacts with four of phosphorus containing molecules. Sizes of the particles in these systems donot exceed 200 nm. Introduction of cluster systems (0,1 -0,3 % vanadium) into epoxy compositions before the introduction of curing agent - polyethylenepolyamine 6 -8 % leads to the acceleration of composition crosslinking and to the combustion decreasing: 1) Oxygen Index grows to 35: 2)mass losses during combustion decrease to 1-2%, 3) combustion time does not exceed 1 s; 4) the intumescence of material sample is being observed during the burner action as well as the foam coke formation.

  • PDF

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

An approach for partial strengthening of circular RC columns using outer steel tube

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.739-749
    • /
    • 2021
  • This paper introduces an improved design equation to evaluate the resisting capacity of circular reinforced concrete (RC) columns partially strengthened with outer steel tube. When RC column members are required to be strengthened according to the change in the loadings considered and/or the deterioration progress in columns, wrapping up RC column with steel circular tube, which takes the form of concrete filled steel tube (CFST), has been popularly considered because of its structural advantage induced from the confinement effect. However, the relatively high construction cost of steel tube is restricting its use to the required region, while deriving the shape of a partial CFST column. To evaluate the resisting capacity of a partial CFST column, numerical analyses need to be performed, and a numerical model proposed in the previous study for the numerical analysis of full CFST columns is used to conduct parametric studies for the introduction of a design equation. The bond-slip effect developed along the interface between the in-filled concrete and the exterior steel tube is taken into consideration and the validity of the numerical model has been established through correlation studies between experimental data and numerical results for partial CFST circular columns. Moreover, parametric studies make it possible to introduce a design equation for determining the optimum length of outer steel tube which produces partial CFST circular columns.

Relationships Between the Transfemoral Socket Interface Pressure and Myoelectric Signal of Residual Limb During Gait

  • Hong, J.H.;Lee, J.Y.;Chu, J.U.;Lee, J.Y.;Mun, M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1070-1073
    • /
    • 2002
  • The biomechanical interaction between the stump and the prosthetic socket is critically important to achieve close-to-normal ambulation. Many investigators suggested that the pressure changes during gait of transfemoral amputees are closely related to the prosthetic alignment, the socket shape, the stump size, and the residual muscle activity. The effects of the prosthetic alignment, the socket shape, and the stump size on the interface pressure were investigated previously. However, there is no report how the residual muscle activities in the transfemoral stump affect the socket interface pressure characteristics during gait. Since designs of socket fur lower limb amputees need to consider the socket interface pressure characteristics, the interface pressure patterns by the residual muscle activities during gait should be investigated. In this study, myoelectric signals (MES) and socket interface pressure in residual limb of transfemoral amputees were measured during the stance and swing phases of gait. For the purpose, specially designed quadrilateral sockets that MES electrodes could be instrumented were fabricated. A total of two transfemoral amputees were participated in the experiments. The measured temporal MES amplitude and interface pressure in knee flexor (biceps femoris) and extensor (rectus femoris) had significant correlations (P < 0.05). Based on the test results, It was suggested that the residual muscle activity of transfemoral amputees stump is an important factor affecting socket pressure changes during walk.

  • PDF