• Title/Summary/Keyword: P-Glycoprotein

Search Result 335, Processing Time 0.032 seconds

An Electron Microscopic Radioautographic Study of the Synthesis and Migration of the Glycoproteins in the Osteoclast of the Mice Maxillary Alveolar Bone (생쥐 상악치조부에서의 파골세포의 당단백 합성 및 이동에 관한 전자현미경 자기방사법적 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.22 no.2
    • /
    • pp.118-126
    • /
    • 1992
  • The pathway and time course of fucose-containing glycoprotein synthesis and intracellular translocation in osteoclasts of the mice maxillary alveolar bone were investigated by electron microscopic radioautography. Male Balb-C mice weighing 17gm were anesthetized with Nembutal and injected via the external jugular vein with 2.5 mCi of $L-[6-^{3}H]-fucose$ (specific activity 16.8 mCi/mmol) in 0.1 ml of sterile saline solution. At 5, 10, 20, 35 minutes and 8 hours after administration of the $^{3}H-fucose$, animals were killed by intracardiac perfusion of 30ml of 2% glutaraldehyde in a modified Tyroid solution, pH 7.4. The maxillae were then removed and further fixed in Karnovsky fixative for an additional 3-4 hours. After rinsing in 0.1M cacodylate buffer for 10 minutes, the maxillae were demineralized for 2 weeks at $4^{\circ}C$ in ethylene diamine tetra acetate containing 2% glutaraldehyde. The first interdental areas were mesiodistally sectioned into slices of 1mm thickness and postfixed in osmium tetroxide. Tissues were then dehydrated and embedded in Poly Bed. To prepare electron microscopic radioautography, the dipping method of Kopriwa (1973) was employed. Thin sections were coated with a crystalline monolayer of ILford $L_4$ photographic emulsion. After exposure for 4 months at $4^{\circ}C$, the sections were developed Kodak Microdol-X and Phenidon (for compact grains), fixed in 30% sodium thiosulfate, stained with uranyl acetate and lead citrate and examined in the electron microscope (JEOL 1200 EX). At 5, 10 and 20 minutes after injection, $^{3}H-fucose$ was concentrated in Golgi cisternae of the osteoblasts. By 35 minutes the labels were observed over small vesicles in the suprannclear area of osteoclasts. At 8 hours, numerous silver grains were located on the ruffled border and cell membrane of osteoclasts. These results indicate that fucose molecules are added in the Golgi apparatus and small vesicles appear to be responsible for translocation of the glycoproteins to the marginal portion of osteoblasts. The glycoproteins are distributed on the osteoclast cell surface and especially over the ruffled border.

  • PDF

A Novel Simple Method to Purify Recombinant Soluble Human Complement Receptor Type 1 (sCR 1) from CHO Cell Culture

  • Wang, Pi-Chao;Hisamune Kato;Takehiro Inoue;Masatoshi Matsumura;Noriyuki Ishii;Yoshinobu Murakami;Tsukasa Seya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • The human complement receptor type 1 (CR 1, C3 b/C4b receptor) is a polymorphic membrane glycoprotein expressed on human erythrocytes, peripheral leukocytes, plasma and renal glomerular podocytes, which consists of transmembrane and cytoplasmic domains with 30 repeating homologous protein domains known as short consensus repeats (SCR). CR1 has been used as an inhibitor for inflammatory and immune system for the past several years. Recently; it is reported that CRl was found to suppress the hyper-acute rejection in xeno-transplantation and can be used to cure autoimmune diseases. A soluble form of CRl, called sCRl, is a recombinant CRl by cleaving the transmembrane domain at C-terminus and has been expressed in Chinese Hamster Ovary (CHO) cells. Several purification methods for sCR1 from CHO cells have been reported, but most of them require complicated steps at high cost. Moreover, such methods are mostly performed under the pH condition apt to denaturing sCR1 and causes sCRl losing its activity. We here report a rapid and efficient method to purify sCR1 from CHO cell. The new method consists of a two-stage of cell culture by cultivating cells in serum medium followed by serum-free medium, and a two-stage of column purification by means of heparin and gel filtration column chromatography. By using this novel method, sCR1 can be purified in a simple and effective way with high yield and purity, furthermore, the purified sCR1 was confirmed to retain its activity to suppress the complement activation in vivo and ex vivo.

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika;Gernig, Anita;Murray, Patrick;Fernandes, Sara;Tuohy, Maria G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1653-1663
    • /
    • 2010
  • The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.

Production of Recombinant Protein, Human Stem Cell Factor, Using Insect Cell Line

  • Park, Sang-Mi;Kwon, Ki-Sang;Goo, Tae-Won;Yun, Eun-Young;Kang, Seok-Woo;Kim, Sung-Wan;Yu, Kweon;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Insect cell cultures have become important tools in the production of biological substances for use in a variety of research, human and veterinary medicine, and pest control applications. These applications often require the introduction of foreign DNA into the cells and have generally used methods originally developed for use with human and other mammalian cell cultures. While these methods can be successfully employed, they are often less efficient with insect cells and frequently involve complex procedures or require specialized equipment. Even when they do work, they may require substantial modification because of differences in the culture medium or growth patterns of insect cells. In this study, We have optimized transfection conditions of Sf9 cell line using insect expression vector pIZT/V5-His which expresses green fluorescent protein effectively. Human stem cell factor (hSCF) is a glycoprotein that plays a key role in hematopoiesis acting both as a positive and negative regulator, often in synergy with other cytokines. It also plays a key role in mast cell development, gametogenesis, and melanogenesis. It can exist in membrane-bound form and in proteolytically released soluble form. As determined by an enzyme-linked immunosorbent assay performed, hSCF level in supernatant averaged 995ng/ml. The human hSCF was partially purified by immunoaffinity chromatography and analyzed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The results show that the hSCF has N-linked carbohydrate and corresponds to the soluble form, at or about 223 amino acids in length. The findings suggest functional importance for soluble hSCF in cells.

  • PDF

Histopathological evaluation of the lungs in experimental autoimmune encephalomyelitis

  • Sungmoo Hong;Jeongtae Kim;Kyungsook Jung;Meejung Ahn;Changjong Moon;Yoshihiro Nomura;Hiroshi Matsuda;Akane Tanaka;Hyohoon Jeong;Taekyun Shin
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.35.1-35.13
    • /
    • 2024
  • Importance: Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. Objective: This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. Methods: Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. Results: Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. Conclusions and Relevance: Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.

Effect of Ethane 1,2-Dimethane Sulfonate(EDS) on the Expression of Pituitary Gonadotropin in Male Rats (수컷 흰쥐 뇌하수체의 생식소자극호르몬 발현에 미치는 Ethane 1,2-Dimethane Sulfonate(EDS)의 효과)

  • Son, Hyeok-Joon;Kim, Soo-Woong;Paick, Jae-Seung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • Ethane 1,2-dimethane sulfonate(EDS), a toxin which specifically kills Leydig cells(LC), has been widely used to prepare the reversible testosterone(T) depletion rat model. In the present study, we monitored the gene expression profiles of pituitary gonadotropins, LH and FSH, up to 7 weeks after EDS injection. Adult male Sprague-Dawley rats($300{\sim}350\;g$ B.W.) were injected with a single dose of EDS(75 mg/kg i.p.) and sacrificed on weeks 0, 1, 2, 3, 4, 5, 6 and 7. Total RNAs were purified from each pituitary, and the message levels of common alpha subunit($C{\alpha}$) of pituitary glycoprotein hormones, LH beta subunit($LH{\beta}$), FSH beta subunit($FSH{\beta}$) and GnRH receptor(GnRH-R) were evaluated by semi-quantitative RT-PCRs. The message levels of $C{\alpha}$ increased sharply during weeks 1-4, then return to the control level on week 5. The mRNA levels of $LH{\beta}$ were elevated after week 2, reached the peak at week 4, then declined to the control level after week 5. The message levels of $FSH{\beta}$ were elevated after week 2, reached the peak at week 3, then declined to the nadir at week 5. Similarly, the mRNA levels of GnRH-R were elevated after week 2, reached the peak at week 3, then gradually declined to the control level after week 5. The present study indicated that EDS treatment could induce reversible alterations in the transcriptional activities of gonadotropin subunits and GnRH-R in the anterior pituitary from male rats. EDS injection model might be useful to understand the mechanism of hormonal regulation of hypothalamus- pituitary neuroendocrine axis in male rats.

  • PDF

Cloning and Expression of FSHb Gene and the Effect of $FSH{\beta}$ on the mRNA Levels of FSHR in the Local Chicken

  • Zhao, L.H.;Chen, J.L.;Xu, H.;Liu, J.W.;Xu, Ri Fu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.292-301
    • /
    • 2010
  • Follicle-stimulating hormone (FSH) is a pituitary glycoprotein hormone that is encoded by separate alpha- and betasubunit genes. It plays a key role in stimulating and regulating ovarian follicular development and egg production in chicken. FSH signal transduction is mediated by the FSH receptor (FSHR) that exclusively interacts with the beta-subunit of FSH, but characterization of prokaryotic expression of the FSHb gene and its effect on the expression of the FSHR gene in local chickens have received very little attention. In the current study, the cDNA fragment of the FSHb gene from Dagu chicken was amplified using reverse transcription polymerase chain reaction (RT-PCR), and inserted into the pET-28a (+) vector to construct the pET-28a-FSHb plasmid. After expression of the plasmid in E. coli BL21 (DE3) under inducing conditions, the recombination protein, $FSH{\beta}$ subunit, was purified and injected into the experimental hens and the effect on the mRNA expression levels of the FSHR gene was investigated. Sequence comparison showed that the coding region of the FSHb gene in the local chicken shared 99%-100% homology to published nucleotides in chickens; only one synonymous nucleotide substitution was detected in the region. The encoded amino acids were completely identical with the reported sequence, which confirmed that the sequences of the chicken FSHb gene and the peptides of the $FSH{\beta}$ subunit are highly conserved. This may be due to the critical role of the normal function of the FSHb gene in hormonal specificity and regulation of reproduction. The results of gene expression revealed that a recombinant protein with a molecular weight of about 19 kDa was efficiently expressed and it was identified by Western blotting analysis. After administration of the purified $FSH{\beta}$ protein, significantly higher expression levels were demonstrated in uterus, ovary and oviduct samples (p<0.05). These observations suggested that the expressed $FSH{\beta}$ protein possesses biological activity, and has a potential role in regulation of reproductive physiology in chickens.

Glutamine Deprivation Inhibits Invasion of Human Prostate Carcinoma LnCap Cells through Inactivation of Matrix Metalloproteinases and Modulation of Tight Junctions (글루타민 결핍에 따른 Tight Junction 및 MMPs 활성 조절을 통한 전립선 암세포의 침윤 억제 현상)

  • Shin, Dong Yeok;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1167-1174
    • /
    • 2013
  • Cancer cells exhibit increased demand for glutamine-derived carbons to support anabolic processes. Indeed, the spectrum of glutamine-dependent tumors and the mechanisms through which glutamine supports cancer metabolism remain areas of active investigation. In the present study, we investigated the effects of glutamine deprivation on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in human prostate carcinoma LnCap cells. Glutamine deprivation markedly inhibited cell motility and invasiveness in a time-dependent manner. The anti-invasive activity of glutamine deprivation was associated with an increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). The activities of matrix metalloproteinase (MMP)-2 and MMP-9 were inhibited in a time-dependent fashion by glutamine deprivation, which was correlated with a decrease in expression of their mRNA and proteins and up-regulation of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, glutamine deprivation repressed the levels of the claudin family members, which are major components of TJs that play a key role in the control and selectivity of paracellular transport. Moreover, the levels of E-cadherin, a type I transmembrane glycoprotein, and snail, an epithelial to mesenchymal transition regulator and zinc finger transcription factor, were markedly modulated by glutamine deprivation. Taken together, these findings suggest that TJs and MMPs are critical targets of glutamine deprivation-induced anti-invasion in human prostate carcinoma LnCap cells.

Establishment of Paclitaxel-resistant Breast Cancer Cell Line and Nude Mice Models, and Underlying Multidrug Resistance Mechanisms in Vitro and in Vivo

  • Chen, Si-Ying;Hu, Sa-Sa;Dong, Qian;Cai, Jiang-Xia;Zhang, Wei-Peng;Sun, Jin-Yao;Wang, Tao-Tao;Xie, Jiao;He, Hai-Rong;Xing, Jian-Feng;Lu, Jun;Dong, Ya-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6135-6140
    • /
    • 2013
  • Background: Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. Methods: The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Results: Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-${\pi}$ (GST-${\pi}$) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. Conclusion: The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-${\pi}$.

The Clinical Significance of Antiphospholipid Antibodies in Korean Children with Henoch-$Sch{\ddot{o}}nlein$ Purpura (Henoch-$Sch{\ddot{o}}nlein$ 자반증에서 항인지질 항체의 임상적 의의)

  • Park, Eun-Jung;Baek, Ji-Young;Shin, Jae-Il;Lee, Jae-Seung;Kim, Hyon-Suk
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.146-152
    • /
    • 2009
  • Purpose : We performed this study to evaluate the incidence and clinical significance of antiphospholipid antibodies (aPL Ab) in Korean children with Henoch-$Sch{\ddot{o}}nlein$ purpura (HSP). Methods : The medical records of 62 patients (31 boys and 31 girls) aged $46.0{\pm}3.1$ (1-16) years with a clinical diagnosis of HSP based on the EULAR/PReS criteria were reviewed retrospectively. From the years 2007 to 2009, the sera from children with acute HSP were tested for aPL Ab such as LA, anti-cardiolipin antibody and anti-${\beta}_2$ glycoprotein I antibody. Results : LA was positive in 18 (29%) of the 62 patients with HSP and We divided the patients into the two groups LA positive group (N=18) and LA negative group (N=44). There were no significant differences between the two groups with regard to abdominal pain, arthralgia and renal involvement, but LA positive group had significantly higher C-reactive protein ($4.3{\pm}7.2$ mg/dL vs. $1.3{\pm}1.8$ mg/dL, P=0.035), erythrocyte sedimentation rate ($37.5{\pm}26.2$ mm/hr vs. $25.1{\pm}22.6$ mm/hr, P= 0.039), IgM ($148.1{\pm}48.4$ mg/dL vs. $114.9{\pm}41.5$ mg/dL, P=0.024), C3 ($143.1{\pm}21.9$ mg/dL vs. $129.7{\pm}24.5$ mg/dL, P=0.048) and C4 levels ($30.9{\pm}6.3$ mg/dL vs. $24.9{\pm}7.8$ mg/dL, P=0.002) compared with LA negative group. Conclusion : We found that the incidence of positive aPL Ab tests was relatively higher in Korean children with HSP and the presence of aPL Ab was associated with acute inflammatory process of HSP. These results suggest that the aPL Ab are involved in the pathogenesis of HSP in children.