• Title/Summary/Keyword: P-Glycoprotein

Search Result 335, Processing Time 0.022 seconds

Inductional Expression of the Human Lactadherin Gene in Mouse Mammary Epithelial Cells

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Teoan
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.94-94
    • /
    • 2002
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinomas and may prevent symptomatic rotavirus infections. In this study, under the control of mouse whey acidic protein (WAP) promoter, the expression pattern of lactadherin (Ltd) in lactogenic hormone-dependent mouse mammary epithelial cell line HC11 were tested. pLNWLtd construct containing 2.4 kilobases of the WAP promoter and 1.5 kilobases of human lactadherin gene was stably transfered into HC11 cells using retroviral vector system. Integration and expression level of the transgene was estimated using PCR and RT-PCR, respectively. Prominent induction of Ltd gene under the WAS promoter was accomplished in the presence of insulin, hydrocortisone and prolactin, while induction with insulin alone resulted in lower expression. Our results demonstrate that the expression of the transgene is increased by synergistic effect of several lactogenic hormones, including insulin, hydrocortisone, and prolactin.

  • PDF

Characterization of an Amylase-sensitive Bacteriocin DF01 Produced by Lactobacillus brevis DF01 Isolated from Dongchimi, Korean Fermented Vegetable

  • Kang, Tae-Kyu;Kim, Wang-June
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.795-803
    • /
    • 2010
  • A DF01 strain that inhibits tyramine-producing Lactobacillus curvatus KFRI 166 was isolated from Dongchimi, a traditional Korean fermented vegetable, and identified as Lactobacillus brevis by biochemical analysis and reverse transcriptase sequencing of 16S rRNA. The antimicrobial compound produced by L. brevis DF01 was secreted at a maximum level of 640 AU/mL in late exponential phase in MRS broth, and its activity remained constant during stationary phase. The activity of bacteriocin DF01 was totally inactivated by $\alpha$-chymotrypsin, pronase E, proteinase K, trypsin, and $\alpha$-amylase, but not by catalase, which indicates the compound was glycoprotein in nature. The activity was not affected by pH changes ranging from 2 to 12 or heat treatment (60, 80, and $100^{\circ}C$ for 30 min), but was reduced after autoclaving. Bacteriocin DF01 had bacteriolytic activity and a molecular weight of approximately 8.2 kDa, as shown by tricine-SDS-PAGE analysis. Therefore, bacteriocin DF01 can be used in the manufacture of fermented meat products due to its inhibition of tyramine-producing L. curvatus and non-inhibition of L. sake, which is used as a starter culture for meat fermentation.

Enterovirus 71 infection and neurological complications

  • Lee, Kyung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.10
    • /
    • pp.395-401
    • /
    • 2016
  • Since the outbreak of the enterovirus 71 (EV71) infection in Malaysia in 1997, large epidemics of EV71 have occurred in the Asia-Pacific region. Many children and infants have died from serious neurological complications during these epidemics, and EV71 infection has become a serious public health problem in these areas. EV71 infection causes hand, foot and mouth disease (HFMD) in children, and usually resolves spontaneously. However, EV71 occasionally involves the central nervous system (CNS), and induces diverse neurological complications such as brainstem encephalitis, aseptic meningitis, and acute flaccid paralysis. Among those complications, brainstem encephalitis is the most critical neurological manifestation because it can cause neurogenic pulmonary hemorrhage/edema leading to death. The characteristic clinical symptoms such as myoclonus and ataxia, cerebrospinal fluid (CSF) pleocytosis, and brainstem lesions on magnetic resonance imaging, in conjunction with the skin rash of HFMD and the isolation of EV71 from a stool, throat-swab, or CSF sample are typical findings indicating CNS involvement of EV71 infection. Treatment with intravenous immunoglobulin and milrinone are recommended in cases with severe neurological complications from EV71 infection, such as brainstem encephalitis. Despite the recent discovery of receptors for EV71 in human cells, such as the scavenger receptor B2 and P-selection glycoprotein ligand 1, it is not known why EV71 infection predominantly involves the brainstem. Recently, 3 companies in China have completed phase III clinical trials of EV71 vaccines. However, the promotion and approval of these vaccines in various countries are problems yet to be resolved.

Production and Characterization of Monoclonal Antibodies to Porcine Zona Pellucida (돼지난자 투명대의 단일클론 항체 생산 및 특성화)

  • 이광희;이홍준;이상호
    • Journal of Embryo Transfer
    • /
    • v.11 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • The envelope of the rnannnalian oocyte plays crucial roles in sperm-oocyte interactions by providing sperm receptors, inducing acrosome reaction and preventing polyspermy. Understanding of properties of the zona pellucida (ZP) is essential for the artificial control of fertility in mammals. This study was carried out to produce and characterize monoclonal antibodies(MAbs) to porcine ZP proteins. Approximately 8,000 ZPs were obtained from follicular oocytes and dissolved in 40$\mu$l of double distilled water. Following immunization through foot-pad injections of Balb /c mice with a ZP solution, the popliteal lymph nodes were recovered at 2 weeks after the last injection. Hybridoma cell lines were established by fusing lymph node cells with P3X63 myeloma cells through selection using HAT medium and screening by immunofluorescence(IF) microscopy on the isolated ZP. Secreted MAbs were found to consist k chains and different heavy chains as evidenced by isotyping. Some of the MAbs demonstrated high specificity to the ZP in IF. The Mabs also showed positive cross reactivity with hamster and mouse eggs, while negative with bovine eggs. The results implicate that the MAbs can be used not only for identification of functional regions of the ZP, but also for elucidation of mechanisms involved in fertilization of mammals. The MAbs will provide basic information on biochemical anatomy of the ZP as well as can be candidates for the future contraceptive vaccines.

  • PDF

Detecting Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) and Inactivated TAFIa (TAFIai) in Normal and Hemophilia A Plasmas

  • Hulme, John P.;An, Seong Soo A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2009
  • Thrombin activatable fibrinolysis inhibitor (TAFI) also known as plasma procarboxypeptidase B or U is a 60 kD glycoprotein, which is the major modulator of fibrinolysis in plasma. TAFI is a proenzyme, which is activated by proteolytic cleavage to an active carboxypeptidase B-like enzyme (TAFIa, 35.8 kD) by thrombin/thrombomodulin and plasmin. Modulation of fibrinolysis occurs when TAFIa enzymatically removes C-terminal lysine residues of partially degraded fibrin, thereby inhibiting the stimulation of tissue plasminogen activator (t-PA) modulated plasminogen activation. TAFIa undergoes a rapid conformational change at $37{^{\circ}C}$ to an inactive isoform called TAFIai. Potato tuber carboxypetidase inhibitor (PTCI) was shown to specifically bind to TAFIa as well as TAFIai. In this study, a novel immunoassay TAFIa/ai ELISA was used for quantitation of the two TAFI activation isoforms TAFIa and TAFIai. The ELISA utilizes PTCI as the capture agent and a double antibody sandwich technique for the detection. Low levels of TAFIa/ai antigen levels were detected in normal plasma and elevated levels were found in hemophilia A plasmas. TAFIa/ai antigen represents a novel marker to monitor fibrinolysis and TAFIa/ai ELISA may be a valuable assay for studying the role of TAFI in normal hemostasis and in pathological conditions.

The Association of Increased Lung Resistance Protein Expression with Acquired Etoposide Resistance in Human H460 Lung Cancer Cell Lines

  • Lee, Eun-Myong;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.1018-1023
    • /
    • 2006
  • Chemoresistance remains the major obstacle to successful therapy of cancer. In order to understand the mechanism of multidrug resistance (MDR) that is frequently observed in lung cancer patients, here we studied the contribution of MDR-related proteins by establishing lung cancer cell lines with acquired resistance against etoposide. We found that human H460 lung cancer cells responded to etoposide more sensitively than A549 cells. Among MDR-related proteins, the expression of p-glycoprotein (Pgp) and lung resistance protein (LRP) were much higher in A549 cells compared with that in H460 cells. When we established H460-R1 and -R2 cell lines by progressive exposure of H460 cells to increasing doses of etoposide, the response against etopbside as well as doxorubicin was greatly reduced in R1 and R2 cells, suggesting MDR induction. Induction of MDR was not accompanied by a decrease in the intracellular accumulation of etoposide and the expression of MDR-related proteins that function as drug efflux pumps such as Pgp and MRP1 was not changed. We found that the acquired resistance paralleled an increased expression of LRP in H460 cells. Taken together, our data suggest the implicative role of LRP in mediating MDR in lung cancer.

Comparison of Gastrointestinal Permeability of Caffeine, Propranolol, Atenolol, Ofloxacin, and Quinidine Measured Using Ussing Chamber System and Caco-2 Cell Monolayer

  • Song, Im-Sook;Choi, Young A;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.8 no.2
    • /
    • pp.34-38
    • /
    • 2017
  • The purpose of this study was to develop a cocktail approach for the measurement of the permeability of marker compounds, caffeine and propranolol (high permeability), ofloxacin (intermediate), atenolol (low), and quinidine (P-glycoprotein substrate), simultaneously. Then we compared the permeability in Caco-2 cells with that in rat intestinal segments. The difference between individual measurement and cocktail approach was less than 20 %, and the permeabilities of these compounds were similar to those previously reported, suggesting that the cocktail transport study and simultaneous drug analysis were successfully developed and validated in this study. Additionally, in the application of this cocktail method, the permeability of five drugs in rat jejunum was similar to that in ileum but different from that in colon, which was measured using the Ussing chamber system. Moreover, permeability in jejunum and ileum was similar to that in Caco-2 cells. In conclusion, the permeability in Caco-2 cells was equivalent to the permeability in rat jejunum and ileum determined with the Ussing system. Therefore, this newly developed cocktail assay and its application to the Ussing system can be a useful tool for robust and rapid screening for site-specific permeability in rat intestine, thus accelerating the prediction of absorption of new chemical entities.

Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis

  • Sapkota, Arjun;Park, Se Jin;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • Multiple sclerosis (MS) is an autoimmune disease characterized by progressive neuronal loss, neuroinflammation, axonal degeneration, and demyelination. Previous studies have reported that 6-shogaol, a major constituent of ginger (Zingiber officinale rhizome), and its biological metabolite, 6-paradol, have anti-inflammatory and anti-oxidative properties in the central nervous system (CNS). In the present study, we investigated whether 6-shogaol and 6-paradol could ameliorate against experimental autoimmune encephalomyelitis (EAE), a mouse model of MS elicited by myelin oligodendrocyte glycoprotein ($MOG_{35-55}$) peptide immunization with injection of pertussis toxin. Once-daily administration of 6-shogaol and 6-paradol (5 mg/kg/day, p.o.) to symptomatic EAE mice significantly alleviated clinical signs of the disease along with remyelination and reduced cell accumulation in the white matter of spinal cord. Administration of 6-shogaol and 6-paradol into EAE mice markedly reduced astrogliosis and microglial activation as key features of immune responses inside the CNS. Furthermore, administration of these two molecules significantly suppressed expression level of tumor necrosis $factor-{\alpha}$, a major proinflammatory cytokine, in EAE spinal cord. Collectively, these results demonstrate therapeutic efficacy of 6-shogaol or 6-paradol for EAE by reducing neuroinflammatory responses, further indicating the therapeutic potential of these two active ingredients of ginger for MS.

Meclofenamate Suppresses MUC5AC Mucin Gene Expression by Regulating the NF-kB Signaling Pathway in Human Pulmonary Mucoepidermoid NCI-H292 Cells

  • Jiho Ryu;Kyung-il Kim;Rajib Hossain;Misoon Lee;Jin Tae Hong;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.306-311
    • /
    • 2023
  • The current study aimed to reveal the potential effect of meclofenamate, a nonsteroidal anti-inflammatory drug, on the gene expression of airway MUC5AC mucin. Human pulmonary mucoepidermoid NCI-H292 cells were pretreated with meclofenamate for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. Thereafter, the effect of meclofenamate on the PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was assessed. Meclofenamate inhibited glycoprotein production and mRNA expression of MUC5AC mucins induced by PMA by inhibiting the degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest meclofenamate suppresses mucin gene expression by regulating NF-kB signaling pathway in human pulmonary epithelial cells.

Characterization of Novel Amylase-Sensitive, Anti-Listerial Class IId Bacteriocin, Agilicin C7 Produced by Ligilactobacillus agilis C7

  • Jeong Min Yoo;Ji Hoon Song;Robie Vasquez;In-Chan Hwang;Jae Seung Lee;Dae-Kyung Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.625-638
    • /
    • 2023
  • Among various biological agents, bacteriocins are important candidates to control Listeria monocytogenes which is a foodborne pathogen. In this study, a novel bacteriocin, named agilicin C7, was isolated from Ligilactobacillus agilis C7 showing inhibitory activity against L. monocytogenes. Agilicin C7 biosynthesis gene was characterized by bioinformatics analyses and heterologously expressed in Escherichia coli for further study. The anti-listeria activity of recombinant agilicin C7 (r-agilicin C7) was lost by proteases and α-amylase, suggesting that agilicin C7 is a glycoprotein. r-Agilicin C7 has wide pH and thermal stability and is also stable in various organic solvents. It destroyed L. monocytogenes by damaging the integrity of the cell envelope. These properties of r-agilicin C7 indicate that agilicin C7 is a novel amylase-sensitive anti-listerial Class IId bacteriocin. Physicochemical stability and inhibitory activity against L. monocytogenes of r-agilicin C7 suggest that it can be applied to control L. monocytogenes in the food industry, including dairy and meat products.