• Title/Summary/Keyword: P removal rate

Search Result 1,095, Processing Time 0.047 seconds

Estimation of Cattle Wastewater Treatment using Singang Advance Biology Reactor (SAB) (SAB 고율미생물반응기를 이용한 축산폐수처리의 성능 평가)

  • Lim, Bongsu;Kim, Doyoung;Park, Sungsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.727-734
    • /
    • 2009
  • This study was carried out to evaluate the high rate biological reactor such as lab scale reactor before the application in site, and to get the basic data for possibility using liquid fertilizer with the effluent from biological reactor when the centrifugal machine was applied. The total volume of this reactor in 6 L, in composted of anoxic reactor (2 L), aerobic reactor (2 L), and nitification reactor (2 L). BOD removal efficiency rates when centrifugal machine was applied after effluent from biological reactor are over than 95%. This biological reactor was required post process to satisfy the effluent standards, and was need centrifugal machine to control the washout of microbes in the reactor. T-N removal efficiency rate in HRT 24 hr with centrifugation is 80.0%, and it is desirable to operate less than $1.3kgN/m^3{\cdot}d$ for 70% of T-N removal efficiency rate. T-P removal efficiency rate in HRT 24 hr is 68.2%, and become higher 71.3% after centrifugation. Considering in the 28.6% T-N removal efficiency rate, the nitrogen contents of the effluent from reactor is 0.34% to satisfy the liquid fertilizer.

Development of a Zero Discharge and Reuse System for Rural Areas (농촌지역을 위한 무방류 재이용시스템 개발)

  • Hong, Min;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.91-96
    • /
    • 2009
  • This study describes a zero discharge and reuse system developed for rural areas. The purpose of the system is decontamination of used irrigation water for down-stream usage and reuse of wastewater in rural villages for preventing water shortage problem expected to happen in near future. The system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes. The main feature of the system is to remove phosphorous by using Fe-ionizing module. Indoor experiments were undertaken with a trial product of the system to test its performance. The removal capacities of T-P, T-N, and BOD were examined. Also the proper time for the replacement of iron plate module was tested as well as the efficiency of T-P removal rate based on the usage of an automatic washing system for the iron plate. As results, the system showed very good water purification performances through obtaining the results of over 90% removal rates from T-P, BOD, and 67% from T-N. The proper time period for replacement of iron plate was maximum 2 years, and also efficiency of T-P removal rate found to be greatly influenced by the usage of an automatic washing system from the test.

Electrochemical Precipitation Treatment of Copper from an Heavymetal Wastewater (중금속폐수에서 구리의 전기화학적 침전처리)

  • 김재우;이재동;이우식;지은상
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 1997
  • This research was conducted in the laboratory to investigate an alternative of Copper(Cu) removal from an heavymetal wastewater using the electrochemical precipitation(ECP) process. The ECP unit consisted of an electrolytic cell made of Titanium plate and Steel plate representing anode and cathode. The DC power source applied to the ECP unit had electrical potential(E) of 50$\pm$ 1V, respectively. The synthetic wastewater used in the experiments contained Cu in the 10 mg/l concentration and the electrode separation were 2, 3, 4 cm and the initial pH were 3, 6, 9, 12, and electrolytic concentration were 0.005, 0.0125, 0.025, 0.0375 mole, and the real heavymetal wastewater used in the experiments. From the experiment for removal efficiency according to pH variation, the low pH area doesn't give the coagulation effect by Ti(OH)$_4$ because process interfere with the coagulation and oxidation reaction, therefore the optimum pH was 4-7. The removal rate was 97.75% after the lapse of 30 minutes when copper concentration and electrolytic concentration were respectively 10 mg/l and 0.025 mole. The removal rate was 96.41% after the lapse of 30minutes when the real heavymetal wastewater used. The optimum consumption of power showed 27KWh/m$^3$ when copper concentration, electrolyte concentration and cell potential were respectively 10 mg/l, 0.025 mole and 50$\pm$ 1 Volt.

  • PDF

VOCs Removal in Drinking Water Treatment Process by Ozonation (오존산화에 의한 수처리공정에서 VOCs의 제거 특성)

  • Han, Myung-Ho;Choi, Joon-Ho;Lim, Hak-Sang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.65-75
    • /
    • 1997
  • Removal characteristics of volatile organic carbons(VOCs) by ozone oxidation and other processes in the raw water of the 1st Nakdong water treatment plant were investigated. Dichrolomethane, toluene and other 7 compounds were detected in the raw water. With regard to detected 4 compounds in finally treated water, it was found that VOCs could not be removed effectively by traditional water treatment process. Benzene, 1,2-dichlorobenzne were not detected in the raw water but they were detected in the process of treatment. The compound of highest detection frequency was dichloromethane. When the raw water was controlled at pH 7, temperature $20^{\circ}C$, 5 minutes as contact time, 10 minutes as reaction time, the removal rate of THMFP, $KMnO_4$ demand, TOC, $UV_{254nm}$ and $NH_3-N$ were 46.4%, 22%, 19.6%, 31% and 8%, respectively. From estimating the finally treated water qualities in 7 kinds of treatment processes, P-6 process(raw water-chlorination-coagulation-ozonation) was most effective for organics removal and THMs control. Removal efficiencies for $KMnO_4$ demand and TOC by the process which combined preozonation with coagulation was twice better than only preozonation. $NH_3-N$ removal rate was shown as 10% by P-3 process(raw water-coagulation-ozonation), but 83% of $NH_3-N$ was removed by P-4 process(raw water-coagulation-chlorination). It was found that the chlorination is more effective than the ozonation for the NH3-N removal as commonly known.

  • PDF

Ammonia Removal Characteristics in Membrane Contactor System Using Tubular PTFE Membrane (관형 PTFE 분리막을 이용한 막 접촉기(Membrane Contactor) 시스템에서 암모니아의 제거 특성)

  • Ahn, Yong-Tae;Hwang, Yu-Hoon;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.353-358
    • /
    • 2011
  • In this study, ammonia removal characteristics in membrane contactor system under various operating conditions were evaluated. The mass transfer coefficient was used to quantitatively compare the effect of various operation conditions on ammonia removal efficiency. Effective removal of ammonia was possible with the tubular PTFE membrane contactor system at all tested conditions. Among the various operation parameters, contact time and solution pH showed significant effect on ammonia removal mechanism. Overall ammonia removal rate was not significantly affected by influent suspended solution concentration unlike other pressure driven membrane filtration processes. Also the osmotic distillation phenomena which deteriorate the mass transfer efficiency can be minimized by preheating of strip solution. Membrane contactor system can be a possible alternative to treat high strength nitrogen wastewater by optimizing operation conditions such as stripping solution flow rate, influent wastewater temperature, and influent pH.

Study on Change of Microbial Activity and Removal Efficiency of Phosphorus with Alum Injection in the Biological Process (생물학적 처리공정 내 Alum 주입에 따른 인 처리 효율과 미생물 활성도 변화에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.188-193
    • /
    • 2011
  • The effects of coagulants on the microorganisms when they are injected directly into the biological treatment facility for T-P removal have been easily observed from the results of past experiments. As such this study is set out to derive the effective plans for the coagulant dosage by analyzing the effects of the injected coagulant on the microbial activity during the chemical treatment for T-P removal. The research methods entailed the assessment of removal efficiency of T-P according to the coagulant dosage while changing the molar ration between Alum and influent phosphorus. At the same time Specific Oxygen Uptake Rate (SOUR) according to the coagulant dosage was measured. SOUR was used as a method for indirect assessment of the microbial activity according to the coagulant dosage. The results from the study showed that with the increase in the alum dosage, the removal efficiency T-P tended to increase. On the other hand, the increase in coagulant dosage resulted in the decrease in SOUR, which indicates the decrease in the microbial activity. Such reduction in the activity could be explained by the increase in the concentration of removal efficiency of $TBOD_5$. Based on experiment results from the study, it is determined that coagulant dosage affects the microbial activity. Moreover, the indirect assessment on the microbial activity using SOUR is considered possible.

Removal Characteristics of Copper from Anthraquinone Dyes by Iron Cementation (안트라퀴논계 염료에서 철 교착반응에 의한 구리의 제거 특성)

  • 천재기;이석희;주창식
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The removal of chelated copper from anthraquinone dyes by cementation on powdered iron was studied. The removal of chelated copper was found to be a function of solution pH, amount of NTA and iron, and reaction temperature. In the presence of NTA, reaction rate of cementation was found to be strongly dependent on reaction temperature, solution pH, amount of NTA and amount of iron powder. These experimental results can be explained successfully by the distribution of complexed copper iron in solutions.

  • PDF

Treatment of Aquacultural Recirculating Water by Foam Separation - I. Characteristics of Protein Separation- (포말 분리법을 이용한 양어장 순환수 처리 - I Protein 분리특성 -)

  • SUH Kuen-Hack;LEE Min-Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.599-606
    • /
    • 1995
  • The feasibility of foam separation to remove protein produced from fish culture water was investigated, By assuming foam separation column as a single well-mixed pool, a simplified model for foam separator conditions was alse studied under the batch operation. The model indicated that the protein removal could be described as a first-order reaction whose rate increases with both superficial air velocity and protein concentration in the bulk solution. from ,the results of an experimental study on the effects of superficial air velocity, the protein concentration, temperature, and pH on protein removal, the superficial air velocity and initial protein concentration in bulk solution were found to be important operational factors. Other experimental results important that foam separator operated under batch conditions would be considered as a completely mixed reactor. The protein removal rate by foam separation process was increased proportionally with the superficial air velocity, and the adsorptive removal rate of protein was found to obey Langmuir adsorption formula. The preposed simplified model was verified with the experimental data obtained from this study. Under the experimental range used, both temperature and pH did not affect the protein removal.

  • PDF

Effects of organic/inorganic carbon source on the biological luxury-uptake of phosphorus by cyanobacteria Synechococcus sp. (남조류 Synechococcus sp.의 혐기-호기법에 의한 인 과잉섭취 효율에 미치는 유기/무기 탄소원의 영향)

  • Yu, Mi-Yeong;Kim, Yun-Ji;Choi, Yun-Jeong;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.437-443
    • /
    • 2020
  • Biological phosphorus removal is accomplished by exposing PAO(phosphorus accumulating organisms) to anaerobic-aerobic conversion conditions. In the anaerobic condition, PAO synthesize PHB(polyhydroxybutyrate) and simultaneously hydrolysis of poly-p resulting phosphorus(Pi) release. In aerobic condition, PAO uptake phosphorus(Pi) more than they have released. In this study, cyanobacteria Synechococcus sp., which is known to be able to synthesize PHB like PAO, was exposed to anaerobic-aerobic conversion. If Synechococcus sp. can remove excess phosphorus by the same mechanism as PAO, synergistic effects can occur through photosynthesis. Moreover, Synechococcus sp. is known to be capable of synthesizing PHB using inorganic carbon as well as organic carbon, so even if the available capacity of organic carbon decreases, it was expected to show stable phosphorus removal efficiency. In 6 hours of anaerobic condition, phosphorus release occurred in both inorganic and organic carbon conditions but SPRR(specific phosphorus release rate) of both conditions was 10 mg-P/g-MLSS/day, which was significantly lower than that of PAO. When converting to aerobic conditions, SPUR(specific phosphorus uptake rate) was about 9 mg-P/g-MLSS/day in both conditions, showing a higher uptake rate than the control condition showing SPUR of 6.4 mg-P/g-MLSS/day. But there was no difference in terms of the total amount of removal. According to this study, at least, it seems to be inappropriate to apply Synechococcus sp. to luxury uptake process for phosphorus removal.

A Study on the Correlation between Temperature and CMP Characteristics (CMP특성과 온도의 상호관계에 관한 연구)

  • Gwon, Dae-Hui;Kim, Hyeong-Jae;Jeong, Hae-Do;Lee, Eung-Suk;Sin, Yeong-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.156-162
    • /
    • 2002
  • There are many factors affecting the results of CMP (Chemical Mechanical Polishing). Among them, the temperature is related to the removal rate and WIWNU (Within Wafer Non-Uniformity). In other words, the removal rate is proportional to the temperature and the variation of temperature distribution on a pad affects the non-uniformity within a wafer. In the former case, the active chemistry improves the rate of chemical reaction and the removal rate becomes better. But, there are not many advanced studies. In the latter case, a kinematical analysis between work-piece and pad can be obtained. And such result analysed from the mechanical aspect can be directly related to the temperature distribution on a pad affecting WIWNU. Meanwhile, the temperature change affects the quantities of both slurry and pad. The change of a pH value of the slurry chemistry due to a temperature variation affects the surface state of an abrasive particle and hence the agglomeration of abrasives happens above the certain temperature. And the pH alteration also affects the zeta potential of a pad surface and therefore the electrical force between pad and abrasive changes. Such results could affect the removal rate and etc. Moreover, the temperature changes the 1st and 2nd elastic moduli of a pad which are closely related to the removal rate and the WIWNU.