• 제목/요약/키워드: P removal

검색결과 3,663건 처리시간 0.024초

전기투석을 이용한 지하수 중의 질산성질소 제거 (The removal of Nitrate-nitrogen from ground water by electrodialysis)

  • 민지희;김한승
    • 상하수도학회지
    • /
    • 제22권3호
    • /
    • pp.307-314
    • /
    • 2008
  • In this study, the effects of applied voltage, solution pH and coexistence of other ions such as sulfate ion (${SO_4}^{2-}$) and chloride ion ($Cl^-$) were investigated on the removal of nitrate-nitrogen ($NO_3{^-}-N$) from ground water by electrodialysis. The examined operating conditions were evaluated for optimizing the removal efficiency of $NO_3{^-}-N$. Real ground water samples taken from a rural area of Yongin city and artificial ones with components similar to the real ground water were tested for the study, which contained $NO_3{^-}-N$ concentration of 17mg/L that exceeds current drinking water quality standard of 10 mg/L. The increase in the removal rate of $NO_3{^-}-N$ was observed as the applied voltage increased from 5V to 30V, while no significant increase in the removal rate appeared at the applied voltage beyond 20V during a given operating time. The removal rate appeared to get lower at both acidic and basic condition, compared to neutral pH. Coexistence of of ${SO_4}^{2-}$and $Cl^-$ demanded much longer operating time to achieve a given removal rate or to meet a certain level of treated water concentration. When nitrate ion was combined with ${SO_4}^{2-}$and $Cl^-$, the removal rate was reduced by 4.29% and 10.83%, respectively.

Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

  • Ali, Esam H.;Hashem, Mohamed
    • Mycobiology
    • /
    • 제35권3호
    • /
    • pp.135-144
    • /
    • 2007
  • The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees, was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum bio-mass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn, Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature $20^{\circ}C$ in case of S. delica while it was $25^{\circ}C$ for T. viride. Incubation of T. viride at higher temperatures ($30^{\circ}C\;and\;35^{\circ}C$) enhanced the removal efficiency of Pb and Cd than low temperatures ($15^{\circ}C\;and\;20^{\circ}C$) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals.

커피찌꺼기를 이용한 폐수 중의 Pb, Cr, Cd의 제거에 관한 연구 (A Study on Removal of Pb, Cr, Cd in Wastewater Using Exhausted Coffee)

  • 임성훈;정문식;박석환
    • 한국환경보건학회지
    • /
    • 제21권1호
    • /
    • pp.21-28
    • /
    • 1995
  • The removal of heavy metals from synthetic wastewater containing Pb, Cr, Cd using previously washed and dried exhausted coffee was studied varying cohcentration, pH and temperature. All the heavy metals were removed in 3.0 minutes and the removal efficiency was maximum 80~90% with different pH and temperature conditions. The differences in removal efficiency between exhausted coffee and activated carbon under the same conditions were not seen. The removal efficiency was slightly increased with increasing pH in Cd and increasing temperature in Cr, respectively. The batch adsorption kinetics and adsorption equilibrium were examined and described by a first order reversible reaction and Freundlich isotherm, respectively. And the removal of Pb was found to have the best removal efficiency.

  • PDF

Determination of Optimum Coagulants (Ferric Chloride and Alum) for Arsenic and Turbidity Removal by Coagulation

  • Choi, Young-Ik;Jung, Byung-Gil;Son, Hee-Jong;Jung, Yoo-Jin
    • 한국환경과학회지
    • /
    • 제19권8호
    • /
    • pp.931-940
    • /
    • 2010
  • The Raw water from Deer Creek (DC) reservoir and Little Cottonwood Creek (LCC) reservoir in the Utah, USA were collected for jar test experiments. This study examined the removal of arsenic and turbidity by means of coagulation and flocculation processes using of aluminum sulfate and ferric chloride as coagulants for 13 jar tests. The jar tests were performed to determine the optimal pH range, alum concentration, ferric chloride concentration and polymer concentration for arsenic and turbidity removal. The results showed that a comparison was made between alum and ferric chloride as coagulant. Removal efficiency of arsenic and turbidity for alum (16 mg/L) of up to 79.6% and 90.3% at pH 6.5 respectively were observed. Removal efficiency of arsenic and turbidity for ferric chloride (8 mg/L) of up to 59.5% at pH 8 and 90.6% at pH 8 respectively were observed. Optimum arsenic and turbidity removal for alum dosages were achieved with a 25 mg/L and 16 mg/L respectively. Optimum arsenic and turbidity removal for ferric chloride dosages were achieved with a 20 mg/Land 8 mg/L respectively. In terms of minimizing the arsenic and turbidity levels, the optimum pH ranges were 6.5 and 8for alum and ferric chloride respectively. When a dosage of 2 mg/L of potassium permanganate and 8 mg/L of ferric chloride were employed, potassium permanganate can improve arsenic removal, but not turbidity removal.

황토와 응집제에 의한 조류 제거 (Algae removal by Loess and coagulant)

  • 양상용;구연봉;최지혁;이인선;신찬기;유재근
    • 환경위생공학
    • /
    • 제12권3호
    • /
    • pp.127-130
    • /
    • 1997
  • The removal of algae was conducted by loess, aluminum sulfate and PAC on a laboratory scale. The loess was consists of organic matter 1.4%, T-N $289{\mu}g/g$, T-P $17{\mu}g/g$, $Al841.2{\mu} g/g$, Fe $592.7{\mu}g/g$, Ca $10.6{\mu}g/g$, Mg $85.5{\mu}g/g$ and Mn $6.6{\mu}g/g$. Test water was dominated by Microcystis aeruginosa. When test water was mixed with 0.01, 0.05. and 0.1 g/$\ell$ of the loess in 5 minutes, after settled in 1 hour, the removal of chl-a was 2, 22, and 36% respectively. The removal of chl-a was 69%, 70% in pH 4.5 and 9.0 and above 92% between pH 5.0 and 8.0 after the $2mg/{\ell}$ of aluminum sulfate was added. When the $2mg/{\ell}$ of PAC and $0.05g/{\ell}$ of loess were added to test water together, the removal of chl-a was 95-99% in pH 4.0-8.0, 60% in pH 9.0, and 18% in pH 10.0. The removal of chl-a was higher when loess, aluminum sulfate and PAC was used together than used alone.

  • PDF

격벽에 의한 조분리와 내부반송을 이용한 산화구 시설의 고도처리개선에 관한 연구 (A Study on the Treatment of Nutrients and Organic Carbon in Wastewater through Spatial Separation and Internal Recycling in a Modified Oxidation Ditch)

  • 이영신;오대민
    • 한국환경보건학회지
    • /
    • 제37권1호
    • /
    • pp.64-72
    • /
    • 2011
  • This study was performed to assess the removal efficiency on nitrogen, phosphorus and organic carbon in wastewater by spatial separation and internal recycling in a modified oxidation ditch process (modified OD). The performances of the modified OD were evaluated via laboratory-scale experiments. The process was operated at hydraulic retention times of 6-48 hours and solid retention times of 17-38 days. We found that organic carbon removal efficiency increased after the modified OD operation period. T-N removal efficiency remained stable; average T-N concentration of effluent was 8.02 mg/l after modified OD operation. In contrast, T-P concentration of effluent was over 1 mg/l. Nitrogen and phosphorus removal efficiency of modified OD at HRT 12 hr were 83.1% and 74.1%, respectively. Also, maximum efficiency was found at SRTs from 20 to 30 days. T-N removal efficiency was 83.1% at a C/N ratio from 3.0 to 3.5. However, T-N removal efficiency decreased at C/N ratios over 3.5. Also, T-P removal efficiency increased with HRT at C/P ratios in the same condition. Maximum efficiency was 74.1% at a C/P ratio from 25 to 28. T-N removal efficiency was 79.2% and T-P removal efficiency was 65.3% after M4 mode operation (added to the internal recycle line connected to the anoxic reactor). The modified OD with spatial separation and internal recycling developed in this study is, therefore, believed to be an improvement for solving problems in the nutrient removal technologies.

N, P 농도에 따른 Chlorella vulgaris의 성장 및 하수고도처리능 평가 (Advanced wastewater treatment capacity and growth of Chlorella vulgaris by nitrogen and phosphorus concentrations)

  • 한수현;이윤희;황선진
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.77-82
    • /
    • 2013
  • The growth and removal capacity of nitrogen and phosphorus of Chlorella vulgaris were evaluated in artificial wastewater with different nitrogen and phosphorus concentrations as element growing components for microalgae growth. The nitrogen concentration was varied in 9, 15, 30 and 60 mg-N/L with fixed phosphorus concentration of 3 mg-P/L. The growth and phosphorus removal capacity of C. vulgaris were high at initial nitrogen concentration of 15 and 30 mg-N/L, and the corresponding N/P ratios calculated were 5 and 10. In the case of varying in 1.5, 3, 6 and 10 mg-P/L of phosphorus concentration with fixed nitrogen concentration of 30 mg-N/L, the growth and removal capacity of nitrogen and phosphorus were excellent with phosphorus concentration of 3 and 6 mg-P/L. The corresponding N/P ratios were shown as 10 and 5. Therefore, the appropriate N/P ratio was concluded between 5 and 10 for wastewater treatment using C. vulgaris.

백색부후균에 의한 크라프트 펄프 표백폐수의 탈색 (Decoorizatiion of Kraft Pulp Bleaching Effluent by White -rot Fungi)

  • 조남석;이재원;박종문;최태호;안드레레오노비치
    • 펄프종이기술
    • /
    • 제31권4호
    • /
    • pp.58-68
    • /
    • 1999
  • This experiment was to investigate decoloization characteristics of E1 effluents from the bleaching plant of pulp mill with three white-rot fungi(Trametes versicolor, Ganoderma appanatum and Pleurotus ostreatus).In addition, the effect of carbon and nitrogen resources was discussed on its decolorization. The color removal of E1 effluent during shaking and stationary cultures were 72% and 80%, respectively. Stationary culture was more effective on decolorization of E1 effluent compared to the shaking culture. The optimum inoculum weight was 1.0g based on dry weight of mycelia . The decolorization medium I showed 88% of the color removal of E1 effluent with in one day cultivation of T.versicolor and P.ostreatus . Color removal was increased from 87% to 90%. T.versicolor and P.ostreatus by the addition of 0.5% glucose. By addition of nitorgen sources(ammonium sulfate and ammonium choride), medium was much higher than that of carbon source. With 0.1% ammoniumm sulfate, P.ostreatus and T.versicolor showed 94% and 92% of the color removal within one day of cultivation , respectively. On decolorization medium II, T.versicolor and P.ostretus were 94% of oclor removal with addition of carbon source. The addition of nitrogen source was much more efficient than that of carbon source. With 0.1% amminium chloride, T.versicolor and P.ostreatus showed 95% of its color removal . The decolorization medium II was higher color removal than medium I, and also MnP and laccase were produced. However, the decolorization medium I produced a little MnP and laccase activity. It could be suggested that MnP and laccase may play an important role in decolorization of E1 effluent.

  • PDF

침지식 평판형 연속회분식 박반응기에서 유입 유기물 부하의 변화에 따른 영양염류의 제거 특성 (Nutrient Removal Characteristics on Organic Material Loadings in Submerged Flat Sheet Type Sequencing Batch Membrane Reactor)

  • 김승건;이호원;강영주
    • 멤브레인
    • /
    • 제20권3호
    • /
    • pp.241-248
    • /
    • 2010
  • $0.4\;{\mu}m$의 세공크기를 갖고 있는 평막이 침지된 연속회분식 반응기에서 유입 유기물 농도가 영양염류 제거에 미치는 영향을 조사하였다. 분리막의 여과성능과 영양염류 제거효과를 규명하기 위하여 유입 유기물의 농도를 200 mg/L (Run-1), 400 mg/L (Run-2) 및 800 mg/L (Run-3)로 연속적으로 변화시키면서 실험하였다. COD/N 및 COD/P의 비가 증가할수록 T-N 및 T-P의 제거율은 모두 증가하였다. Run-1, Run-2 및 Run-3에서 T-N의 평균 제거율은 각각 28.1, 32.6 및 90.4%이었으며, 투과수의 T-N 평균 농도는 각각 32.0, 30.0 및 4.3 mg/L 이었다. 또한 Run-1, Run-2 및 Run-3에서 T-P의 평균 제거율은 각각 13.6, 35.3 및 93.1%이었으며, 투과수의 T-P 평균 농도는 각각 3.11, 2.33 및 0.25 mg/L이었다.

Mixotrophic 미세조류를 이용한 유기물 및 영양염류 제거에 미치는 pH 및 폭기의 영향 (Effects of pH and aeration rates on removal of organic matter and nutrients using mixotrophic microalgae)

  • 김선진;이윤희;황선진
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2013
  • Specific growth rate and removal rate of nitrogen and phosphorus of Chlorella sorokiniana, Chlorella vulgaris, Senedesmus dimorphus those are able to metabolite mixotrophically and have high nitrogen and phosphorus removal capacity were examined. Based on the results, one microalgae was selected and conducted experiments to identify the operating factors such as pH and aeration rate. The specific growth rate and phosphorus removal rate of C. sorokiniana significantly presented as $0.29day^{-1}$ and 1.65 mg-P/L/day, while the nitrogen removal rate was high as 12.7 mg-N/L with C. vulgaris. C. sorokiniana was chosen for appropriate microalgae to applying for wastewater treatment system and was cultured in pH ranged 3 to 11. High specific growth rate and removal rate of nitrogen and phosphorus were shown at pH 7 as $0.71day^{-1}$, 7.61 mg-N/L/day, and 1.24 mg-P/L/day, respectively. The specific growth rate examined with aeration rate between 0 and 2 vvm (vol/vol-min) highly presented as $1.2day^{-1}$ with 1.5 ~ 2 vvm, while the nitrogen removal rate was elevated with 0.5 vvm as 9.43 mg-N/L/day.