• 제목/요약/키워드: P/M Preform Design

검색결과 4건 처리시간 0.022초

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

소결분말 콘넥팅로드 단조의 예비성형체 설계 (Preform Design for Forging of a PIM Connecting Rod)

  • 박종진
    • 한국분말재료학회지
    • /
    • 제2권1호
    • /
    • pp.19-28
    • /
    • 1995
  • Powder forging is a combined technology of powder metallurgy and precision hot forging. Recently, the technology is developing rapidly because of its economic merits, especially in automotive part manufacturing. In the present study, the finite element technique was developed to predict density variation during P/M forging and the technique was applied to analysis of forging of a P/M connecting rod. Although deformation mode of the connecting rod was quite complex, several sections were selected and analyzed under an assumption of asymmetric or plane strain deformation. It was found that some modifications were necessary on the cross section of the beam portion. Therefore, the cross section was modified repeatedly until a satisfactory result of the analysis was obtained. On the other hand, no modifications were necessary in the ring and the pin portions. It is anticipated that the developed technique can be used to optimize preform design and manufacturing processes in P/M forging, which are highly critical to produce successful products in practice.

  • PDF

반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화 (Optimization of preform mold injection molding process for hemispheric plastic structure fabrication)

  • 박정연;고영배;김동언;하석재;윤길상
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

커넥팅 로드의 분말단조를 위한 소결 및 단조특성의 실험적 연구 (Experimental Research of Powder Forging for Sub-Scale Connecting rods)

  • 이동원;이정환;정형식;이영선;박종진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.149-158
    • /
    • 1994
  • Powder forged Connecting Rods have become attractive for use in automotive engines. The powder forging process offers beneficial material utilization as well as the minimization of finishing operations over that of conventionally forged rods. In the present work, the sintering behavior of Fe-2Cu-0.6C, optimum preform design and forgeability of various forging variables were investigated. Our data were generated using a newly proposed sub-scale con-rod developed specifically to simulate the powder forging process. We obtain optimum condition of sintering and powder forging process.

  • PDF