• Title/Summary/Keyword: Ozone water

Search Result 584, Processing Time 0.032 seconds

Effect of Ozone Treatment on Livestock Drinking Water Quality (오촌처리가 가축 음용수 수질에 미치는 영향)

  • 최희철;이덕수;강희설;최종윤;유용희;한정대;노환국;권두중;김형호
    • Journal of Animal Environmental Science
    • /
    • v.7 no.3
    • /
    • pp.191-195
    • /
    • 2001
  • This research was carried out to investigate the effect of ozone treatment to improve the livestock drinking water quality. Ozone concentration treated was 18.5~36.5ppm in each system. PH and dissolved oxygen(DO) concentration in drinking water was increased by ozone and ozone+anion treatment. But there was no difference in UV used for drinking water treatment. Oxidation and deduction Potential(ORP) was increased while ozone was treated. Colony Forming Unit(CFU) of E. coli 0.8:$H^-$, Salmonella typhimurium, Staphylococcus aureus was decreased after 30 minute to 1 hour ozone and UV treatment.

  • PDF

Discharge and Ozone Generation Characteristics by Permittivity of Dielectric Material installed in Water Surface Discharge (수표면 방전에 투입된 유전체의 유전율에 따른 방전 및 오존발생특성)

  • 박승록;김진규;김형표
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-63
    • /
    • 2003
  • A silent type ozone generator using water surface has been studied and improved its ozone generation characteristics by installing dielectric heads in the just under the surface of the wale- At this time, different permittivitis of dielectric beads were used to change the discharge condition of water surface. The current-voltage characteristics and characteristics of ozone generation quantity of the test system were investigated and discharge photos of glass beads were observed The height of Taylor cone may be the cause of the discharge bridge to decrease the ozone generation on the discharge spacing. In this study, the hight of Taylor cone could be controlled greatly by installing dielectric beads just under the water surface. Therefore a higher ozone generation also could be obtained. As the permittivity of dielectric material increased. discharge starting voltage was advanced and maximum 110 ppmy of ozone was generated by using the ferroelectric ball.

Effect of Drinking Water Treatment by DOF(Dissolved Ozone Flotation) System (DOF 공정에 의한 정수처리 효과)

  • Lee, Byoung-Ho;Song, Won-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.743-750
    • /
    • 2008
  • In water treatment plant the Dissolved Ozone Flotation(DOF) System may be employed because this system has various abilities, such that it can remove SS using microbubbles, and it can exert strong oxidation power in removing taste and odor, color, and microbial agents. In order to investigate effectiveness of the DOF system in water treatment, removal characteristics of various water quality parameters were observed depending on the different levels of ozone concentrations. Removal efficiencies of water quality parameters in DOF system were compared with those in DAF(Dissolved Air Flotation) system and in CGS(Conventional Gravity Settling) system. Optimum ozone dose obtained in the pilot experiments was 2.7 mg/L. With increasing ozone dose higher than 2.7 mg/L, removal rates of turbidity, KMnO$_4$ consumption, UV$_{254}$ absorbance, and TOC were reversely lowered. High concentration of ozone dissociate organic matter in water, so that increasing dissolved organic level in effluent. Removal rates of water quality parameters at optimum ozone dose were obtained, such that removal rates of turbidity, KMnO$_4$ consumption, TOC, and UV$_{254}$ asorbance were 88.9%, 62.9%, 47%, and 77.3% respectively. Removal rate of THMFP was 51.6%. For all the parameters listed above, the DOF system was more effective than the DAF system or the CGS system. It is found that the DOF system may be used in advanced water treatment not only because the DOF system is more efficient in removing water quality parameters than the existing systems, but because the DOF system is also required smaller area than the CGS system for the treatment plant.

A Study on Nitrification of Raw Waters Containing Linear Alkyl Sulfate in Biological Activated Carbon (생물활성탄을 이용한 Linear Alkyl Sulfate함유 원수에서의 질산화에 관한 연구)

  • Park, Seong Sun;Chang, Ji Soo;Yu, Myong Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.116-126
    • /
    • 1995
  • The purpose of this study was to investigate the removal of ammonium nitrogen by biological nitrification in raw water containing LAS using BAC. At batch teats, LAS removal by ozone followed the first order reaction, and the rate constants(k) by ozone dose 1, 3mg/min.L were $0.040min^{-1}$, $0.062min^{-1}$ respectively. Therefore, the more ozone was dosed, the higher LAS was removed The reaction between ozone and ammonium nitrogen also followed the first order, and rate constants(k) at pH7,8 and 9 were $8.9{\times}10^{-4}min-1$, $3.8{\times}10^{-3}min^{-1}$, and $2.9{\times}10^{-2}min^{-1}$ respectively at ozone dose of 3mg/min.L . Therefore, ammonium nitrogen was little removed by ozone under neutral pH of 7. The continuous flow apparatus had four sets composed of a ozone contacter and a GAC column. Through continuous filtration test for 50days, the following conclusions were derived; (1) LAS was removed 23%, 30% respectively by ozone dose 1, 3mg/L, and was not detected in all column effluents during the period of experiment. Therefore, it appeared that adsorption capacities of each column still remained. (2) Ammonium nitrogen concentration after ozone contact varied little in raw Water because pH of raw water was from 6 to 7, and was transfered to nitrite and nitrate within GAC columns as the result of staged nitrification. After 30days, nitrite was not detected in all column effluents due to biological equilbrium between nitro semonas and nitrobacter Average removals of ammonium nitrogen in each column after the lapse of 30days were the following; ${\cdot}$ column A (ozone dose 3mg/L, EBCT 9.5min): about 100% ${\cdot}$ column B (ozone dose 1mg/L, EBCT 9.5min): 91% ${\cdot}$ column C (ozone dose 3mg/L, EBCT 14.2min): about 100% ${\cdot}$ column D (ozone dose 0mg/L, EBCT 9.5min): 53% Though column A and C reached nitrification of about 100%, column C (longer EBCT than column A) was more stable than column A. (3) After backwash, nitrification reached steady state within 5 to 8 hours. Therefore, nitrification was not greatly affected by backwash. (4) According to the nitrification capacity in depth of column A, C, where 100% nitrification occured. LAS was removed within 20cm, while ammonium nitrogen required more depth to be removed by nitrification.

  • PDF

Bioremediation of Phenolic Compounds Having Endocrine-disrupting Activity Using Ozone Oxidation and Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Daidai, Masakazu;Kobayashi, Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.151-155
    • /
    • 2004
  • The bioremediation of water system contaminated with phenolic compounds having endocrine-disrupting activity, i.e. 2,4-dichlorophenol, 2,4-dichlorophenoxy acetic acid (2,4-D), and 2,4,5-trichlorophenoxy acetic acid (2,4,5-T), was investigated by using ozone oxidation and activated sludge treatment. Ozone oxidation (ozonation time: 30 min) followed by activated sludge treatment (incubation time: 5 days) was an efficient treatment method for the conversion of phenolic compounds in water into carbon dioxide and decreased the value of total organic carbon (TOC) up to about 10% of initial value. Furthermore, 2,4-D was dissolved in water containing salt, i.e. artificial seawater (ASW), and this water was used as model coastal water contaminated with phenolic compounds. The activated sludge treatment (incubation time: 5 days) could consume significantly organic acids produced from 2,4-D in the model costal water by the ozone oxidation (ozonation time: 30min) and decrease the value of TOC up to about 35% of initial value.

Investigation of Simple Electrochemical Conditions for Generation of Ozonized Water

  • Tanaka, Mutsumi;Kim, Han-Joo;Kim, Tae-Il;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 2008
  • An electrochemical generation of ozonized water was investigated by using ${\beta}-PbO_2$ as an anode and tap water as an anolyte. According to the potentiometric ozone detection which utilizes potential differences arisen from a chemical reaction of ozone and iodide, increasing tendency of ozone concentration on electrolysis time could be observed to show the maximum value of 8 ppm at an electrolysis time of 10 min. Ozone could be generated promptly even at an electrolysis time of 10 sec., suggesting great advantages of this electrochemical process in terms of simplicity and readiness that might be applied directly to practical uses including medical and/ or food industries. Influences of electrolysis on the properties and surface conditions of a $PbO_2$ electrode were also discussed from the results of cyclic voltammetry, scanning electron microscope, and X-ray diffractometer.

A Literature Study on the Ozone Degradation of Concrete Structures in Water Treatment Facilities (수처리 시설 콘크리트 구조물의 오존 열화에 관한 문헌적 연구)

  • Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.177-178
    • /
    • 2015
  • Recently, Advanced water treatment facilities with Ozone are being introduced owing to domestic water pollution. However, waterproofing/corrosion prevention construction method of concrete structure for existing advanced water treatment makes waterproofing/corrosion prevention materials and concrete deteriorated because of strong oxidation of ozone. it causes increase of maintenance cost and water quality degradation. Therefore, in this study, it will figure out problems of waterproofing/corrosion prevention construction method being applied to through existing studies.

  • PDF

Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater

  • Kim, Jeong-Hyun;Kim, Hyung-Suk;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • This study investigates the treatment of pigment wastewater using a sequential batch reactor (SBR) followed by dissolved ozone flotation-pressurized ozone oxidation treatement (DOF-$PO_2$). The process efficiency has been evaluated at the lab scale on the basis of water quality parameters. In addition, the effect of pure oxygen and air was investigated on the removal of COD, BOD, and TN in the SBR process. It was observed that under comparable conditions the removal efficiencies of these water quality parameters using pure oxygen and air were similar. The effect of the recycle rate was also investigated for its impact on the water quality parameters using different ozone dissolving pressures in a DOF process in order to optimise conditions. The results conclude that the use of an SBR and ozone contact by DOF-$PO_2$ is a highly effective treatment for pigment wastewater and aids in the achievement of effluent discharge criteria.

Removal Characteristics of Hazard Organic Substances in the Multi-stage Ozone Contactor (다단오존접촉조에서 유해화학물질의 제거특성)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.41-49
    • /
    • 1999
  • The water treatment by was performed to remove VOC and organic substances in the multi-stage ozone contactor. Ozone is mainly utilized to change the chemical structures of organic substance, of which finally has the purpose to degrad them. The removal efficiency of VOC has 20~60% at the ozone concentration of 3 ppm, in case of trichloroethylene, its efficiency is reduced by 85% at the ozone contact time of 8 min. Design factors such as the number of stage, ozone concentration, zone contact time are determined for optimal treatment in the multi-stage contactor.

  • PDF

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.