• Title/Summary/Keyword: Ozone response

Search Result 60, Processing Time 0.028 seconds

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

Changes in photosynthesis and carbohydrate synthesis in response to elevated UV-B environment (고 자외선 환경에서 식물의 광합성, 기공조절 및 탄수화물 합성)

  • Yun, Hyejin;Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • The ozone depletion has caused plants to be exposed to an increased penetration of solar ultraviolet-B (UV-B) radiation. Enhanced UV-B radiation may have influence on biological functions of plant in many aspects including inhibition of photosynthesis. It is evident that UV-B can potentially impair the performance of all three main component processes of photosynthesis, the photophosphorylation reactions of the thylakoid membrane, the $CO_2$-fixation reactions of the Calvin cycle and stomatal control of $CO_2$ supply. Owing to these depressed reactions, the production and allocation of carbohydrates might be markedly affected, and therefore, the growth and development of plant are distinctly reduced. In this review paper, we provide basic theory and further researches in terms of photosynthesis and carbohydrate synthesis in response to elevated UV-B radiation.

An Application of Toxicity Test to Water Management and Water Treatment (수질관리와 수처리에의 독성시험의 응용)

  • Kim, Berm-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2005
  • In this research, we tried to develop the application method to water management and treatment using toxicity test method. When we measure the toxicity of environmental samples, we have to decide whether we take some countermeasures to reduce the toxicity or not. The first issue is how to set these action levels in each bioassays. A new idea was attempted to authorize indirect approach of each bioassays through the response characteristics against mixture of chemicals in water quality standard. The significant response in the cell-growth-inhibition bioassay was detected for standards-mixture(STDs). For acute toxicity assay, STDs-based implicit correlation between risks to humans and bioassay data showed a rational approach to set action levels in practical management. A simple model was proposed to describe and predict the changes in the total toxicity based on the concentrations of toxic-controlling chemicals during the ozonation of landfill leachates. On the basis of this simple model, toxicity reduction was predicted for pre-aggregation treatment before ozonation and ozone concentration during the ozonation. The method proposed in this study would be useful in optimizing water treatment processes and their running conditions in terms of the toxicity reduction efficacy.

Optimization of Plasma Process to Improve Plasma Gas Dissolution Rate using Three-neck Nozzle (3구 노즐을 이용한 플라즈마 가스 용존율 향상을 위한 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.30 no.5
    • /
    • pp.399-406
    • /
    • 2021
  • The dissolution of ionized gas in dielectric barrier plasma, similar to the principle of ozone generation, is a major performance-affecting factor. In this study, the plasma gas dissolving performance of a gas mixing-circulation plasma process was evaluated using an experimental design methodology. The plasma reaction is a function of four parameters [electric current (X1), gas flow rate (X2), liquid flow rate (X3) and reaction time (X4)] modeled by the Box-Behnken design. RNO (N, N-Dimethyl-4-nitrosoaniline), an indictor of OH radical formation, was evaluated using a quadratic response surface model. The model prediction equation derived for RNO degradation was shown as a second-order polynomial. By pooling the terms with poor explanatory power as error terms and performing ANOVA, results showed high significance, with an adjusted R2 value of 0.9386; this indicate that the model adequately satisfies the polynomial fit. For the RNO degradation, the measured value and the predicted values by the model equation agreed relatively well. The optimum current, gas flow rate, liquid flow rate and reaction time were obtained for the highest desirability for RNO degradation at 0.21 A, 2.65 L/min, 0.75 L/min and 6.5 min, respectively.

Study on the research trends and future strategy of essential oil (정유의 연구동향(硏究動向)과 향후(向後) 연구전략(硏究戰略)에 대(對)한 고찰(考察))

  • Kim, Jin-Soo;Kim, Dong-hee
    • Journal of Haehwa Medicine
    • /
    • v.9 no.2
    • /
    • pp.43-56
    • /
    • 2001
  • 1. All Essential oils have antibacterial properties. 2. Essential oils reduce contamination. 3. Most of essential oils acts as an antofungal, antiviral, antiparasitic, antimicrobial agent and antioxidants. 4. They contain anions, ozone, and oxygenating molecules. 5. It is belueved that they take chemicals and metallices out of the air by breaking the molecular chain. 6. In France, it was reported that various essential oils prevent a side effect of radiation. 7. The essential oils travel via the olfactory nerve stimulating a emotional and phychological response that is believed to be responsible for releasing genetic blue priting from the cells thus releasing emotional trauma.

  • PDF

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

Response of Antioxidative Enzymes of Two Rice Cultivars to Ozone Exposure and Nutrient Supply

  • Lee, Sang-Chul;Hwan, Cho-Jeong;Park, Shin-Young;Son, Tae-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Ozone ($O_3$)-induced changes in chlorophyll content and specific activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were investigated in two rice cultivars (Oryza sativa L.) grown under variable nutrient treatments. For this study, two rice cultivars of Ilpumbyeo (IL) and Keumobyeo#l (KM), which were known as resistant and susceptible to $O_3$, respectively, were exposed to $O_3$at 0.15ppm for 30 days and investigated with 10 days interval. The available nutrient regimes were varied by doubling the supply of nitrogen (N), phosphorus (P) and potassium (K) Within a basic fertilizer status (N, P, K; 15, 12, 12kg/l0a$^{-1}$ ). In both cultivars and at all nutrient status, chlorophyll content in $O_3$-treated plants decreased with prolonged treatment period, although higher N, P and K supply with $O_3$ treatment alleviated the decrease in chlorophyll content. The activities of almost all enzymes investigated for this study were decreased during initial stages of $O_3$- exposure except GPX which maintained higher activity throughout the exposure period than the non-treated plant. However, the antioxidant enzymes in $O_3$-treated plants showed almost the same or higher activities on 30 days after $O_3$ - exposure. The most significant changes in activities were observed in GR of the $O_3$-treated leaves. With the prolonged treatment period, the activity of GR at 30 days was increased by 3-8 times compared to those in 10 days. Most of the investigated enzymes showed very similar tendency to $O_3$ treatment in all fertilizer status. There was no observed evidence for enhanced detoxification of $O_3$-derived activated oxygen species in plants grown under higher fertilizer status compared with that in plants grown under basic fertilizer status. The increase in the activities of SOD, APX and GR in rice leaves by relatively long-term treatment with $O_3$ at low concentration is considered to indicate that the plant became adapted to the $O_3$ stress and the protection system increased its capacity to scavenge toxic oxygen species. Our results in two rice cultivars indicated that there was little difference in the activities of antioxidant enzymes between IL and KM, which were known as resistant and susceptible cultivar to $O_3$

  • PDF

Application of Response Surface Methodology to Optimize the Performance of the Electro-Chlorination Process (전기분해 염소소독공정의 반응표면분석법을 이용한 차아염소산나트륨 발생 최적화)

  • Ju, Jaehyun;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Background: Disinfection is essential to provide drinking water from a water source. The disinfection process mainly consists of the use of chlorine and ozone, but when chlorine is used as a disinfectant, the problem of disinfection by-products arises. In order to resolve the issue of disinfection by-products, electro-chlorination technology that produces chlorine-based disinfectants from salt water through electrochemical principles should be applied. Objectives: This study surveys the possibility of optimally producing active chlorine from synthetic NaCl solutions using an electro-chlorination system through RSM. Methods: Response surface methodology (RSM) has been used for modeling and optimizing a variety of water and wastewater treatment processes. This study surveys the possibility of optimally producing active chlorine from synthetic saline solutions using electrolysis through RSM. Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. Results: Various operating parameters, such as distance of electrodes, sodium chloride concentration, electrical potential, and electrolysis time were evaluated. A central composite design (CCD) was applied to determine the optimal experimental factors for chlorine production. Conclusions: The concentration of the synthetic NaCl solution and the distance between electrodes had the greatest influence on the generation of hypochlorite disinfectant. The closer the distance between the electrodes and the higher the concentration of the synthetic NaCl solution, the more hypochlorous acid disinfectant was produced.

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

Ambient air pollution and allergic diseases in children

  • Kim, Byoung-Ju;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.6
    • /
    • pp.185-192
    • /
    • 2012
  • The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and ground-level ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.