• 제목/요약/키워드: Ozone environment

검색결과 695건 처리시간 0.03초

HALOE 자료를 이용한 중위도 지역의 오존농도 추이분석 (Trend Analysis for Stratospheric Ozone Concentration in the Middle Latitude Northern Hemisphere Using HALOE Data)

  • 가수현;권미라;오정진
    • 한국대기환경학회지
    • /
    • 제21권4호
    • /
    • pp.413-422
    • /
    • 2005
  • The ozone concentration measured by HALOE (Ver 19) from Oct. 1991 to Dec. 2003 is used for analyzing the variation of ozone concentration. The HALOE loaded in UARS is observing several gases in the atmosphere, from 10km to 80km. Fourier analysis of these data in the middle latitude northern hemisphere is reported in this paper. To detect any possible long term trends, the fourier transformed time series was back transformed after removing signals with time periods of less than 6 months. Although the results clearly show the strong annual cycle, it is difficult to show any long term trends from the fourier series. We also compared the ozone volume mixing ratio's from HALOE with that from the ground-based radiometry to evaluate the accuracy of microwave observation at Sookmyung Women's University.

고농도 오존일의 강우와 운량 (Precipitation and Cloud Cover on High Ozone Days)

  • 김영성;김영진;윤순창
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.747-755
    • /
    • 1999
  • Effects of precipitation and cloud cover on high ozone days are examined by investigating the precipitation and average cloud cover before the ozone peak time within a day. High ozone days above 100 ppb in the Greater Seoul Area(GSA) for the ozone season from May to September are chosen for the analyses in terms of the surface meteorological data during 1990~1997. The result shows that the effect of precipitation on the rise of ozone concentration is definitely negative so that ozone concentration could not rise above 100ppb immediately after precipitation. But, the effect of cloud cover is associated with the variations of other meteorological parameters. The number of high ozone days with "zero" cloud cover is rather less than that with cloud cover of 1 to 4 since temperature is usually lower in "zero" cloud cover days. Furthermore, ozone concentration can rise above 100ppb even with full cloud cover when the wind is weak and the temperature is high.temperature is high.

  • PDF

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

1990~1997 기간 중 서울.수도권 지역의 고농도 오존 사례 연구 (Studies of High-Ozone Episodes in the Greater Seoul Area between 1990 and 1997)

  • 김영성;오현선
    • 한국대기환경학회지
    • /
    • 제15권3호
    • /
    • pp.267-280
    • /
    • 1999
  • To investigate the characteristics of high-ozone occurrences in the Greater Seoul Area(GSA), three high-ozone episodes were selected, for which the ozone warning for concentration above 120 ppb might be issued. The selection was on the basis of morning wind directions and speeds, and daily maximum ozone concentrations measured between 1990 and 1997. The episodes chosen to meet selection criteria were seven days in July 1992, nine days in July 1994, and three days in August 1994, as respectively characterized by southwesterly, easterly, and calm winds in the morning. However, more than 80% of high-ozone days in the GSA were associated with calm winds and the concomitant accumulation of local emission in the morning, rather than being due to transport of ozone or its precursors. This is believed to be the primary reason why ozone concentrations in the GSA varied in a completely different manner even between adjacent monitoring stations. Several premises for initiating research studies for resolving these local variations of ozone concentrations in the GSA are also discussed.

  • PDF

한반도 중부지역의 밀에 대한 오존 위해도 평가 (Assessment of Ozone Risk for Wheat in the Central Region of the Korean Peninsula)

  • 홍낙기;이종범;김재철;천태훈
    • 한국대기환경학회지
    • /
    • 제31권1호
    • /
    • pp.41-53
    • /
    • 2015
  • This study was performed to assess the level of ozone risk for wheat in the central region of the Korean Peninsula by using two ozone indices, the ozone-concentration based index (AOT40) and the ozone-flux based index ($AF_{st}Y$), and to analyze the relationship between the two indices. In the present study for $AF_{st}Y$ calculation, the Monin-Obukhov length was estimated using the Pasquill stability class which was determined from routine meteorological data such as wind speed, solar radiation and cloudiness. The AOT40 and $AF_{st}6$ indices were calculated for wheat at 3 sites in the central region of the Korean Peninsula during a period of 3 months from April 1 to June 30, 2006. It should be noted that the estimation of ozone index $AF_{st}6$ in this study was performed under several assumptions. The results for both indices, AOT40 and $AF_{st}6$, showed that agricultural crops could be seriously damaged by ozone in the local region of the Korean Peninsula.

봄철 서울지역 야간 오존농도 상승에 미치는 장거리 수송의 영향 (The Influence of Long-range Transport on Springtime Nocturnal Ozone Enhancement in Seoul)

  • 오인보;김유근
    • 한국대기환경학회지
    • /
    • 제20권4호
    • /
    • pp.503-514
    • /
    • 2004
  • In Seoul metropolitan area, nocturnal variation of surface ozone concentrations observed at 27 monitoring sites from 1998 to 2002 showed that high ozone levels occurred frequently during the spring. Frequency distributions for nighttime ozone indicated that elevated concentrations in spring were influenced by advection of different air mass compared to other seasons. Surface wind analysis during the spring revealed that relatively strong southwesterly winds were associated with nocturnal ozone enhancement, which can be attributed to the regional transport of ozone. In order to identify the origin of nocturnal ozone enhancement in spring, 3-day backward trajectories were calculated by HYSPLIT 4 for the episode days and then classified. The results showed that NW, W, and SW flows, indicating influence of polluted air masses from the China continent, have 51% in a]1 the episode days, which suggest that the nocturnal ozone enhancement can occur under the effect of long-range transport of ozone-laden air mass on a regional scale. Case study of nocturnal ozone maxima associated with long-range transport was discussed in more detail in the light of meteorological conditions. Southwesterly synoptic flow along the outer edge of moving high-pressure system was found to be the important cause of nocturnal ozone maxima in Seoul. This flow could lead to be long-range transport of ozone that had effectively accumulated in the stagnating portion of the system located eastern coast of China. Low atmosphere soundings, backward trajectories, and elevated ozone and CO levels at the back-ground tiles gave evidence for regional effects on nocturnal ozone enhancement In Seoul.

The Measures of Ozone Pollution: An Analysis of Ozone Concentration Data in USA

  • Kim, Hong-J.;Lovell, Sabrina J.;O'Farrell, John;Cho, Yong-Sung
    • Asian Journal of Atmospheric Environment
    • /
    • 제2권1호
    • /
    • pp.47-53
    • /
    • 2008
  • In this study, we analyzed how ozone pollution could be differently measured and how these different measures varied year to year and across the ten most populated cities in the United States, from 1980 to 2000. Although peak values of ozone concentration have been significantly reduced in most polluted U.S. cities for the last 20 years, the annual average values of ozone concentration have not been lowered as much as peak values. Ozone concentration data for each city shows a unique pattern of distribution, central tendency, and also there is a wide variation among different ozone measures. Two different cities with the same annual mean concentration of ozone can experience very different distributions of ozone concentration within a year. Ozone measures also show a wide margin of variability as they are estimated from different ozone monitoring sites within each city. Ozone pollution statistics can be largely varied depending on the choice of measures, monitoring sites, and averaging time period. EPA's new ozone standard of 0.08 ppm averaged over an eight-hour appears to be more stringent than the current maximum ozone standard of 0.12 ppm averaged over one hour.

돕슨 분광광도계(No.124)의 오존 자동관측시스템화 (Automation of Dobson Spectrophotometer(No.124) for Ozone Measurements)

  • 김준;박상서;문경정;구자호;이윤곤;;조희구
    • 대기
    • /
    • 제17권4호
    • /
    • pp.339-348
    • /
    • 2007
  • Global Environment Laboratory at Yonsei University in Seoul ($37.57^{\circ}N$, $126.95^{\circ}E$) has carried out the ozone layer monitoring program in the framework of the Global Ozone Observing System of the World Meteorlogical Organization (WMO/GAW/GO3OS Station No. 252) since May of 1984. The daily measurements of total ozone and the vertical distribution of ozone amount have been made with the Dobson Spectrophotometer (No.124) on the roof of the Science Building on Yonsei campus. From 2004 through 2006, major parts of the manual operations are automated in measuring total ozone amount and vertical ozone profile through Umkehr method, and calibrating instrument by standard lamp tests with new hardware and software including step motor, rotary encoder, controller, and visual display. This system takes full advantage of Windows interface and information technology to realize adaptability to the latest Windows PC and flexible data processing system. This automatic system also utilizes card slot of desktop personal computer to control various types of boards in the driving unit for operating Dobson spectrophotometer and testing devices. Thus, by automating most of the manual work both in instrument operation and in data processing, subjective human errors and individual differences are eliminated. It is therefore found that the ozone data quality has been distinctly upgraded after automation of the Dobson instrument.

인접지역간 오존 농도 차이에 대한 기상요소의 영향분석(부산광역시 기장군을 대상으로) (Analysis on the Effect of Meteorological Factors related to Difference of Ozone Concentration at the Neighboring Areas in Gijang Busan)

  • 김민경;이화운;정우식;도우곤
    • 한국환경과학회지
    • /
    • 제21권9호
    • /
    • pp.1097-1113
    • /
    • 2012
  • Ozone is the secondary photochemical pollutant formed from ozone precursor such as nitrogen dioxide and non-methane volatile organic compounds(VOCs). The ambient concentration of ozone depends on several factors: sunshine intensity, atmospheric convection, the height of the thermal inversion layer, concentrations of nitrogen oxides and VOCs. Busan is located in the southeast coastal area of Korea so the ozone concentration of Busan is mainly affected from the meteorological variables related to the sea such as sea breeze. In this study the ozone concentrations of Busan in 2008~2010 were used to analyse the cause of the regional ozone difference in eastern area of Busan. The average ozone concentration of Youngsuri was highest in Busan however the average ozone concentration of Gijang was equal to the average ozone concentration of Busan in 2008~2010. The two sites are located in eastern area of Busan but the distance of two sites is only 9km. To find the reason for the difference of ozone concentration between Youngsuri and Gijang, the meteorological variables in two sites were analyzed. For the analysis of meteorological variables the atmospheric numerical model WRF(Weather Research and Forecasting) was used at the day of the maximum and minimum difference in the ozone concentration at the two sites. As a result of analysis, when the boundary layer height was lower and the sea breeze was weaker in Youngsuri, the ozone concentration of Youngsuri was high. Furthermore when the sea breeze blew from the south in the eastern area of Busan, the sea breeze at Youngsuri turned into the southeast and the intensity of sea breeze was weaker because of the mountain in the southern region of Youngsuri. In that case, the difference of ozone concentration between Youngsuri and Gijang was considerable.

연안도시지역 해풍지연이 오존분포에 미치는 영향 (Effects of Late Sea-breeze on Ozone Distributions in the Coastal Urban Area)

  • 오인보;김유근;황미경
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.345-360
    • /
    • 2004
  • The late sea-breeze and its impacts on ozone distributions were investigated during April to September from 1998 to 2002, in the Busan metropolitan area (including surrounding areas) using the surface ozone concentrations (obtained at 9 monitoring sites), local meteorological variables (obtained near the shore), together with synoptic data. The urban scale ozone concentration was also simulated using the MM5/UAM-V to better understand the role of late sea-breeze in Busan. The results from observation study showed that most of the late sea-breeze occurred when weak offshore synoptic flow (northwesterly) suppressed development of sea - breeze, and the ozone concentration level and frequencies exceeding ozone standard increased with the onset time of sea breeze. We also found that the late sea-breeze clearly induces relatively weak wind speed and high temperature during the daytime As a result it enhances the photochemical ozone accumulation and delays the occurrence time of the averaged maximum ozone concentrations. The results of simulation for high ozone episode (24 August, 2001) by MM5/UAM -V revealed that the late sea-breeze interacted with weak offshore synoptic wind can contribute significantly to high ozone concentration in the coastal urban area. The simulated horizontal and vertical distribution of ozone concentration indicated that ozone can be accumulated over the sea under stagnant condition and return to the land in the late afternoon with the sea breeze, suggesting both the relationship between late sea-breeze and recirculation and the importance of late sea -breeze effects influencing severe ozone pollution in Busan.