• Title/Summary/Keyword: Ozone effect

Search Result 507, Processing Time 0.021 seconds

Disinfection Properties and Variation in the Ozone Concentration in Seawater Generated Using a Low-Temperature Dielectric Barrier Discharge Plasma Reactor (저온 유전체장벽 플라즈마로 생성된 해수중의 오존농도 변동과 살균 특성)

  • Lee, Young Sik;Kim, Yoonbin;Kim, Kwang Seog;Han, Hyung-Gyun
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1181-1186
    • /
    • 2012
  • We studied the ozone concentrations generated by low-temperature dielectric barrier discharge plasma reactor after adding air and phytoplankton to control the ozone concentrations in seawater. We also examined the numbers of bacteria and Vibrio spp. after treatment using the plasma reactor. As the airflow rate was increased, more ozone was removed. Although marked variation in the ozone decrease was observed with and without airflow, the rate of ozone removal did not increase proportionately with the airflow rates. The ozone concentration decreased with increasing organic matter and time. The amount of organic matter seems to be an important factor decreasing the dissolved ozone concentration in liquid. The ozone concentration was 0.07, 0.32, 1.28, and 2.3 mg/L when operating the plasma reactor for 30, 60, 180, and 300 s, respectively; i.e., the ozone concentration increased with the reactor operating time. The initial numbers of bacteria and Vibrio spp. were 800 and 480 CFU/mL, respectively. After operating the plasma reactor at a flow rate of 6 L/min for 30 s, no bacteria or Vibrio spp. were detected. The disinfection effect of this plasma reactor seems to be superior to that of a conventional ozone generator.

Analysis of the Effect of Wind Direction on Ozone Level

  • Na, Jong-Hwa;Sung, Su-Jin;Yu, Hye-Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.527-536
    • /
    • 2012
  • In this paper we analyze the effect of circular variables such as wind direction, time and month on the ozone level. In particular, we examined the effect of wind direction by exploratory data analysis methods and provide the correlation and regression analyzes in the cases including all circular explanatory variables. In the analysis, we convert time and month variables to circular variables and analyze the effect of these variables on regression analysis; in addition, we also consider circular-circular regression. We used weather condition and air pollution data collected from Dongdaemoon district of Seoul in 2007.

New Approach to Air Quality Management (대기오염관리의 새로운 접근방법)

  • 윤명조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.25-48
    • /
    • 1993
  • International concern over the environmental pollution is ever increasing, and diversified countermeasures must be devised in Korea also. Global trend, damages, problems and countermeasures with respect to issues mentioned in the Rio Declaration, such as prevention of ozone layer destruction, reduction of migratory atmospheric pollution between neighboring countries, and prevention of global greenhouse effect, were discussed in this report. Conclusion of the report is summarized as follows : A. Measurement, Planning and Monitoring (1) Development and implementation of a global network for measurement and monitoring from the global aspects such factors as related to acid rain(Pioneer substances, pH, sulfate, nitrate), effect of global temperature(Air temperature, $CO_2$, $CH_4$, CFC, $N_2O$) and destruction of ozone layer($CFC_S$). (2) Establishment of network system via satellite monitoring movement of regional air mass, damage on the ozone layer and ground temperature distribution. B. Elucidation of Present State (1) Improvement and development of devices for carbon circulation capable of accurately forecasting input and output of carbon. (2) Developmental research on chemical reactions of greenhouse gas in the air. (3) Improvement and development of global circulation model(GCM) C. Impact Assessment Impact assessment on ecosystem, human body, agriculture, floodgate, land use, coastal ecology, industries, etc. D. Preventive Measures and Technology Development (1) Development and consumption of new energy (2) Development of new technology for removal of pioneer substances (3) Development of substitute matter for $CFC_S$ (4) Improvement of agriculture and forestry means to prevent the destruction of ozone layer and the greenhouse effect of the globe (5) Improvement of housing to prevent the destruction of ozone layer and the greenhouse effect of the globe (6) Development of new technology for probing underground water (7) Preservation of forest (8) Biomass 5. Policy Development (1) Development of strategy model (2) Development of long term forecast model (3) Development of penalty charge effect and expense evaluation methods (4) Feasibility study on regulations By establishing the above mentioned measures for environmentally sound and sustainable development to establish the right to live for humankind and to preserve the one and only earth.

  • PDF

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Inactivation Effect of Cryptosporidium by Ozone and UV (Ozone과 UV를 이용한 Cryptosporidium의 불활성화 효과)

  • Kim, Yun-Hee;Lee, Chul-Hee;Lee, Shun-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • The objective of this study was to investigate the inactivation characteristics of Cryptosporidium oocysts by ozone and UV and to suggest the better, disinfection method. The inactivation CT value of 1 log(90%) and 2 log(99%) in of one disinfection, which is an index of disinfection for inactivation effect by ozone, were respectively 5.77 $mg{\cdot}min/L$ and 21.30 $mg{\cdot}min/L$. The inactivation in UV disinfection was not affected by pHs(5, 7 and 9), low turbidity(5 and below NTU) and UV intensity(0.2 and 0.6 $mWs/cm^2$) but obviously decreased at high turbidity over 20 NTU. Therefore UV disinfection capacity can be obtained when a good turbidity removal in drinking water treatment process is achieved. And if oocysts is exposed by high UV over 0.6 mWs/cm2 during enough time, the better inactivation effect will be obtained.

Removal of Sulfamethoxazole using Ozonation or UV Radiation; Kinetic Study and Effect of pH (오존 처리 및 UV 조사를 이용한 Sulfamethoxazole 제거; 동역학적 고찰 및 pH 영향)

  • Jung, Yeonjung;Kim, Wangi;Jang, Hayoung;Choi, Yanghwun;Oh, Byungsoo;Kang, Joonwun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This study was performed to assess the potential use of ozone or UV radiation for the treatment of water contaminated with sulfamethoxazole (SMX), which is frequently used antibiotic in human and veterinary medicines, especially focusing on the kinetic study and effect of pH. In a study using ozone alone, kinetic study was performed to determine second-order rate constant ($k_{O3,SMX}$) for the reactions of SMX with ozone, which was found to be $1.9{\times}10^6M^{-1}s^{-1}$ at pH 7. The removal efficiencies of SMX by ozone were decreased with increase of pH due to rapid decomposition of ozone under the condition of various pH (2.5, 5.3, 7, 8, 10). In a UV irradiation study at 254 nm, a kinetic model for direct photolysis of SMX was developed with determination of quantum yield ($0.08mol\;Einstein^{-1}$) and molar extinction coefficient ($15,872M^{-1}cm^{-1}$) values under the condition of quantum shielding due to the presence of reaction by-products formed during photolysis. For effect of pH on photolysis of SMX, SMX in the anionic state ($S^-$, pH > 5.6), most prevalent form at environmentally relevant pH values, degraded more slowly than in the neutral state (SH, 1.85 < pH < 5.6) by UV radiation at 254 nm.

Removal of residual ozone in drinking water treatment using hydrogen peroxide and sodium thiosulfate (과산화수소와 티오황산나트륨을 이용한 정수처리공정에서의 잔류오존 제거)

  • Kwon, Minhwan;Kim, Seohee;Ahn, Yongtae;Jung, Youmi;Joe, Woo-Hyun;Lee, Kyunghyuk;Kang, Joon-Wun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.481-491
    • /
    • 2015
  • The aim of this study was to evaluate the chemical quenching system for residual ozone and to determine the operating condition for the quenching system. Hydrogen peroxide ($H_2O_2$) and sodium thiosulfate ($Na_2S_2O_3$) were investigated as quenching reagents for ozone removal, and the tendency of each chemical was notably different. In the case of $H_2O_2$, the degradation rate of ozone was increased as the concentration of $H_2O_2$ increase, and temperature and pH value have a significant effect on the degradation rate of ozone. On the other hand, the degradation rate of ozone was not affected by the concentration of $Na_2S_2O_3$, temperature and pH value, due to the high reactivity between the ${S_2O_3}^{2-}$ and ozone. This study evaluates the decomposition mechanism of ozone by $H_2O_2$ and $Na_2S_2O_3$ with consideration for the water quality and reaction time. Furthermore, the removal test for the quenching reagents, which can be remained after reaction with ozone, was conducted by GAC process.

HAAs Formation by Chlorine Dose and Reaction Time and The Removal Effect of Precursors by The Advanced Oxidation Processes (염소주입량과 반응시간에 따른 HAAs 생성과 고도산화처리에 의한 전구물질 제거 영향)

  • Kim, Kyoung-Suk;Oh, Byung-Soo;Ju, Seul;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • This study investigated the effect of chlorine dose and chlorine reaction time for the formation of haloacetic acids (HAAs). According to the results, HAA formation was highly affected by chlorine dose and chlorine reaction time. HAA formation reached a plateau value at 30 mg/L of chlorine dose and 24 hr of chlorine reaction time. For the speciation of formed HAAs in the test water, the concentration of brominated-HAAs was significantly lower than that of chlorinated-HAAs because of low level of bromide ion concentration in the test water. It also investigated the removal efficiency of HAA precursors by several unit processes, such as ozone alone, UV alone, and combined ozone/UV system. Of them, ozone/UV system was proved as the best process to control the HAAs formation. The increase of the brominated-HAAs was observed during ozonation with and without UV irradiation showing the slight increase of total HAA concentrations.

Characteristics of manganese removal by ozonation: Effect of existing co-ion and optimum dosage (오존을 이용한 용존성 망간 제거 특성: 공존이온의 영향 및 최적주입량)

  • Kwak, Yeonwoo;Lee, Seulki;Lee, Yongsoo;Hong, Seongho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.145-152
    • /
    • 2018
  • This study is focused on manganese (Mn(II)) removal by ozonation in surface water. Instant ozone demand for the water was 0.5 mg/L in the study. When 0.5 mg/L of Mn(II) is existed in water, the optimum ozone concentration was 1.25 mg/L with reaction time 10 minutes to meet the drinking water regulation. The ozone concentration to meet the drinking water regulation was much higher than the stoichiometric concentration. The reaction of soluble manganese removal was so fast that the reaction time does not affect the removal dramatically. When Mn(II) is existed with Fe, the removal of Mn(II) was not affected by Fe ion. However As(V) is existed as co-ion the removal of Mn(II) was decreased by 10%. Adding ozone to surface water has limited effect to remove dissolved organic matter. When ozone is used as oxidant to remove Mn(II) in the water, the existing co-ion should be evaluated to determine optimum concentration.

Effects of Operating Parameters on Dissolved Ozone and Phenol Degradation in Ozone Contact Reactor (오존 접촉 반응기의 용존 오존 농도 및 페놀 분해에 미치는 운전변수의 영향)

  • Chung, Jae-Woo;Park, Jeong-Wook;Lee, Chun-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.241-247
    • /
    • 2010
  • The Effects of operating parameters such as initial pH, gaseous ozone concentration, supplied gas flow rate on dissolved ozone concentration and phenol degradation in ozone contact reactor were investigated. Dissolved ozone concentrations were saturated to constant values after a certain ozone contact time. The saturation values were influenced by experimental parameters. Dissolved ozone concentration decreased with the increase of initial pH because the ozone is unstable in high pH regions. The gaseous ozone concentration in a constant gas supply affected the saturation concentration of dissolved ozone and the injection rate of gas with a constant ozone concentration determined the rate to reach dissolved ozone saturation. Effects of operating parameters on phenol degradation were closely related with those of parameters on dissolved ozone concentration. Phenol degradation was enhanced by the increase of initial pH, because the degradation of dissolved ozone gave birth to free radicals which have much higher reactivity with phenol. Increase of gaseous ozone concentration and gas flow rate promoted the phenol degradation through the generation of dissolved ozone which plays the role in phenol degradation. The injection of methanol deteriorated the phenol degradation through the scavenging effect on OH radicals.