• Title/Summary/Keyword: Oyster shell waste

Search Result 96, Processing Time 0.036 seconds

The Study on the Properties of Calcined Oyster Shell & Hwang-To Powder (황토를 혼합 소성한 굴패각 미분말의 물성에 관한 연구)

  • Jung, Joo-hyung;Park, Min-Soo;Jung, Min-Soo;Kim, Hyo-Youl;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.41-44
    • /
    • 2007
  • Recently, the strenuous industrial waste is scattered and one of the oyster also make the serious environmental contamination. The purpose of this study is investigating an utilization ability as calcium binder of the oyster with Hwang-To according to a rate(10%, 20%, 30%, 40%, 50%). This study grasp physical properties of the oyster powder, bake production of the paste, and conduct the flow test, stiff time test and strength test. According to baking condition, strength of $1000^{\circ}C$(120minutes, rate 30%) is higher than any other condition. The oyster powder from above $900^{\circ}C$ seem possibility as binder hereafter. It is thought that the continuous research will be necessary.

  • PDF

Dynamics of Heavy Metals in Soil Amended with Oyster Shell Meal (굴 패화석시용에 따른 토양 내 중금속 동태 변화)

  • Lee, Ju-Young;Hong, Chang-Oh;Lee, Chang-Hoon;Lee, Do-Kyoung;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.358-363
    • /
    • 2005
  • A large amount of oyster-shell waste has been illegally disposed at oyster farm sites along the southern coast of Korea, which already created serious environmental problems. Therefore, the study was undertaken to increase the consumption of oyster shell meal as a soil amendment. The effects of oyster shell meal on dynamics of heavy metals and uptake of heavy metals by spring Chinese cabbage were evaluated in silt loam soil (in Gyeongsang National University, Jinju, Gyeongnam-do, Korea), where 0, 4, 8, 12 and 16 Mg $ha^{-1}$ oyster-shell meal fertilizer were added. Lime treatment (2 Mg $ha^{-1}$) was selected as a control. In the results of this study, cabbage yields were increased by increasing levels of oyster-shell meal fertilizer. With increasing levels of oyster-shell meal fertilizer, total heavy metals concentrations were not significant among treatments. However, 0.1N HCl extractable heavy metals concentration was significantly reduced due to increasing of soil pH. A lot of portion (ca. $80{\sim}90%$) heavy metals fraction of all fractions was residual phase in soil after harvesting. The contents of Cu, Mo, Zn in cabbage were slightly increased by increasing levels of oyster shell meal fertilizer. However, there were no toxic symptoms of heavy metals during cultivation. Conclusively, it was estimated that oyster shell fertilizer could be a good amendment to increase productivity of crop and reduce uptake of heavy metals by crop and mobility of heavy metals in soil.

A Study on the $H_2S$ Removal with Utilization of Seashell Waste(I) -The Characteristics of Sulfided Reaction Using Thermal Gravimetric Analyzer- (패각 폐기물을 이용한 $H_2S$ 제거에 관한 연구(I) -열중량분석기를 이용한 황화반응특성-)

  • 김영식
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.2
    • /
    • pp.45-49
    • /
    • 2003
  • In this study, lots of methods have been studing to utilize energy and decrease contaminated effluents. There has been great progress on IGCC (Integrated gasification combined cycle) to reduce thermal energy losses. The following results have been conducted from desulfurization experiments using waste shell to remove H$_2$S. According to TGA results, temperature had influenced on H$_2$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at 80$0^{\circ}C$. Desulfurization was related to calcination temperature. Considering temperature ranges of exhausted gas from hot gas gasification equipment were 400~80$0^{\circ}C$. Thus, desulfurization efficiency would be increased desulfurization temperature situation at highly. Experiments by TGA showed that particle size of sorbents had influenced on desulfurization capacity. Maximum desulfurization capacity was observed at 0.631 mm for oyster and clam. Rest of sorbents showed similar capacity within 0.171~0.335 mm particle size range. So, particle size would be considered. When would be used waste shells as IGCC sorbents. According to the results about desulfurization capacity by TGA, oyster had the best desulfurization capacity among limestone and waste shell. We would be identify to substituted oyster for existing sorbents

Development of Eco-friendly Binder Using Waste Oyster Shells (친환경 굴껍질 고화재(R) 개발)

  • Gil-Lim 한국해양연구원, 연안항만공학본부;Chae Kwang-Suk;Paik Seung-Chul;Yoon Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.79-85
    • /
    • 2005
  • An experimental study was carried out to investigate the recycling possibility of waste oyster shells, which induce environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this study is to develope eco-friendly binder using waste oyster shells, and to reinforce dredged soils fur soft soil improvement. In this paper, a series of laboratory tests including compressive strength tests were performed to evaluate strength characteristics of soils treated by developed binder with different water content of dredged soils, mixing rates of binder, curing days. Based on test results, eco-friendly binders manufactured from waste oyster shells were estimated as good resource materials for soft soil improvements.

Evaluation of Long-Term Performance of Concrete Blended with Industrial Waste(Oyster Shell) (산업폐기물(굴패각)을 혼입한 콘크리트의 장기성능 평가)

  • 김학모;양은익;이성태;정용일;최중철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.227-232
    • /
    • 2002
  • To evaluate the practical application of oyster shells as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells Is appreciably lower than that of normal concrete. 1'hereby, concrete with higher oyster shell has the possibility giving a bad influence on the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture ratio increases. Namely, the modulus is reduced by approximately 10∼15% when oyster shells are blended up to 20% replacing the fine aggregate. The drying shrinkage strain increases as the blending ratio increases. In addition, the existing model code of drying shrinkage does not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on freezing and thawing resistance, carbonation and sulfuric acid attack of concrete recycling. However, water permeability is considerably improved.

  • PDF

Gas Reaction Characteristics of Waste Oyster Shell Sorbent

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Yoo, Kyung-Seun;Choung, Young-Hean;Choi, Suck-Gyu;Kim, Young-Sik
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.365-370
    • /
    • 2005
  • The objective of this study is to develop the sorbent of oyster shell, which can remove gaseous acid pollutants emitted from the incinerator and power plants. The physicochemical properties of prepared absorbents have been measured using ICP and BET Also, this study is to investigate the Hydration/calcination reaction in the fixed bed reactor. Thus, the results could be summarized as follows. Oyster shell can be used in powder type without former processing. It should be also noted that sulfation reactivity of oyster sample increases to about 5 times by calcination/hydration reaction due to the increase of specific surface area and pore volume. From these experiments, we have found that both $SO_2$ and $NO_x$ in simulated flue gas can be effectively removed by use of oyster absorbent.

  • PDF

A Sustainable and Viable Method to Recycle Oyster Shell Waste as an Alternative of Limestone in Limestone Calcined Clay Cement (LC3) (석회석 소성 점토 시멘트(LC3) 내 석회석 대체재로서 굴 패각의 친환경적인 재활용 방안)

  • Her, Sung-Wun;Suh, Heong-Won;Park, Jae-Yeon;Im, Su-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Over the last decades, great efforts have been devoted to reuse industrial wastes and by-products from various industries as supplementary cementitious materials in order to reduce carbon dioxide(CO2) emission by reducing the use of Portland cement in construction. Oyster shell waste, originating from the fishery industry, is available in huge quantities in certain areas, and is generally discarded or landfilled. In this study, we aimed to reuse oyster shell as an alternative to limestone in limestone calcined clay cement(LC3). The oyster shell calcined clay cement(OC3) paste were produced and were characterized via X-ray diffraction, isothermal calorimetry, compressive strength tests, and thermogravimetry. The results revealed that OC3 pastes exhibited similar strength development and reactivities by pozzolanic reaction with LC3, which implies that oyster shell could be used as a substitute for limestone in LC3.

Strength Change of Concrete with Crushed Oyster Shell by the Addition of Ethylbenzene (에틸벤젠에 의한 굴폐각 혼합공시체의 압축강도 변화 특성)

  • 윤현석;이기호;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.103-116
    • /
    • 2002
  • The development of contaminated sites often requires foundation concrete to be placed in contact with soils contaminated with organic compounds. There is a common perception that organic compounds affect the setting and hardening of concrete, giving a reduced long-term strength. In this study, unconfined compressive strength tests for concrete cured in Ethylbenzene were performed. The possibility of byproduct to be used for aggregate of concretes as materials of construction was also evaluated by carring out the investigation of the characteristics of the mixture of concrete and crushed oyster shell which is treated as waste material and often illegally disposed at coastal oyster production site. The transformation of strength characteristics was investigated by varying the blending ratio of fly ash.

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.