• 제목/요약/키워드: Oxygen membrane

검색결과 877건 처리시간 0.038초

안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가 (Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality)

  • 이윤희;어성욱
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.808-812
    • /
    • 2013
  • A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권6호
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell

  • Jian Yao;Fayi Ya;Xuejian Pei
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.38-50
    • /
    • 2023
  • Proton exchange membrane fuel cell (PEMFC) is a portable and clean power generation device. The structural arrangement of the flow field has a significant influence on the delivery efficiency of PEMFC. In this article, a new bionic flow channel is designed based on the inspiration of a spider shape. The branch channel width and branch corner are studied as the focus, and its simulation is carried out by the method of computational fluid dynamics (CFD). The results show that when channel width/rib width and corner of the branch are 1.5 and 130° , respectively, it is the best numerical combination and the cell comprehensive performance is excellent. The final model using this numerical combination is compared with the traditional flow channel model to verify the advancement of this scheme.

Pt-Based Core-Shell Nanocrystals with Enhanced Activity and Durability toward Oxygen Reduction Reaction

  • Choi, Sang-Il
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2016
  • The oxygen reduction reaction (ORR) in a polymer electrolyte membrane (PEM) fuel cell requires the use of Pt-based catalysts. Due to the high cost and low abundance of Pt, many researchers have been studied to reduce the use of Pt while to enhance the catalytic performance of Pt. One of the promising strategies is the deposition of Pt as ultrathin skins of only a few atomic layers on nanoscale substrates made of another metal. This presentation will discuss the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocrystals. By optimizing the catalytic behavior of Pt-based nanocrystals, we obtained the greatly enhanced ORR activity and durability.

  • PDF

대장균의 실관투석배양 (Hollow Fiber Dialysis Culture of E. coli)

  • 김인호;윤태호
    • KSBB Journal
    • /
    • 제9권5호
    • /
    • pp.492-498
    • /
    • 1994
  • 설관막 장치를 이용하여 대장균의 투석배양을 수 행했다. 투석액으로 배지 내의 초산을 제거함으로써 초산의 저해효과를 경감할 수 있었다. 초산 생성속도는 포도당과 용존산소농도에 대단히 민감하였고, 따라서 막을 통한 포도당의 투과속도는 산소공급속도와 균형을 유지해야 했다. 막을 통해 포도당이 천 천히 공급될 때, 대장균의 비성장속도는 포도당 투 과속도에 좌우되었고 초산의 생성은 억제되였다.

  • PDF

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

그래핀 산화물 소자에서의 산소 작용기 이동 연구 (Investigation of Oxygen Functional Group Movement in Graphene Oxide Devices)

  • 기은희;;전지훈;최진식;박배호
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.100-104
    • /
    • 2023
  • In this study, a device was fabricated to check the possibility of a memory device by controlling the oxygen functional groups in graphene oxide formed with a 45-second exposure time. We discovered that graphene oxide can be formed using the ultraviolet (UV) light treatment method with different exposure times. Moreover, Raman spectroscopy measurement revealed that the oxygen functional groups can be moved by controlling the voltage. We further studied the change in the local graphene oxide region, which was found to be related to the modulation of the electrical properties of the device. Therefore, the fabricated graphene oxide device can be used as a wettability switching membrane and graphene-based ion transport device.