• Title/Summary/Keyword: Oxygen enrichment

Search Result 118, Processing Time 0.023 seconds

Investigation on Flame Characteristics′ Variation by Flue Gas Recirculation and Fuel Injection Recirculation (산화제류 및 연료류 희석에 의한 화염특성변화에 대한 연구)

  • Han, Ji-Woong;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1625-1631
    • /
    • 2004
  • Investigation on Flue Gas Recirculation(FGR) flame and Fuel Injection Recirculation(FIR) flame was performed with numerical method. Quantitative Reaction Path Diagram(QRPD) is utilized to compare the different chemistry effects between FGR flame and FIR flame. In order to compare flamelets in various oxygen-enrichment conditions reasonably, the adiabatic flame temperature and Damkohler number were held fixed by modulating the amount of diluents to fuel and oxidizer stream and by varying global strain rate of flame respectively. Basic flame structures were compared and characteristics of CH$_4$ decomposition and NO formation were analyzed based on QRPD analysis between FGR flame and FIR flame.

A Study on Characteristic of Ceramic Tube for Ozone Generation (오존발생용 세라믹 방전관 특성에 관한 연구)

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Hong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1724-1726
    • /
    • 2002
  • A novel ozonizer has been developed using a high-frequency surface discharge and a high purity alumina ceramic as its dielectric component. A thin ceramic layer, cylindrical in form, is adhered by a film-like induction electrode. An ac exciting voltage of frequency to 0.6 kHz from 1.0 kHz and $6{\sim}9kV$ peak-to-peak is applied between the electrodes to produce a stable high-frequency silent discharge for generation of ozone. A substantial reduction of the exciting voltage is also enabled by using a thin alumina ceramic layer. As a result, the ozonizer can easily produce ozone concentration($128g/m^2$ for oxygen) and power efficiency(360g/kWh for oxygen) without using a special enrichment means.

  • PDF

Ozone Generation Characteristic of Ceramic Reactor using Ti-Al-Si (세라믹 방전관의 오존 발생 특성)

  • Cho, K.H.;Park, J.Y.;Park, S.H.;Lee, D.H.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.206-208
    • /
    • 2002
  • A novel ozonizer has been developed using a high frequence surface discharge and a high purity ceramic as its dielectric component. And A cylindrical thin compound ceramic catalyst in reactor is adhered to inside of the film-like outside electrode. An ac exciting voltage with frequency to 0.6 kHz from 1.0 kHz and $4{\sim}6$ kV of peak-to-peak is applied between the electrodes to produce a stable high-frequency silent discharge for generation of ozone. A substantial reduction of the exciting voltage is also enabled by using a thin ceramic. As a result, the ozonizer can easily produce ozone concentration(50 $g/m^3$ for oxygen) and power efficiency(240 g/kWh for oxygen) without using a special enrichment means.

  • PDF

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

Exploration for the Carlin-type Gold Deposits and Its Potential to Korea (칼린형 금광상 탐사와 국내 적용성 연구)

  • Park Maeng-Eon;Sung Kyu-Youl;Baek Seung-Gyun;Kim Pil-Geun;Kang Heung-Suk;Moon Young-Hwan
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.421-434
    • /
    • 2005
  • Abstract Based onthe characteristics of Carlin-type gold deposit in Nevada district, a potential in Korea is evaluated to the Yemi area where is structurally controlled by folds and trust fault. The fault of high angles are combined with a more permeable rocks such as the Yemi breccia and laminated silty limestone. The pattern of enrichment factors for Tl, Sb, As, Ag, Pb, Zn, Cu, Mo and W of limestones in the southern area are geochemically similar with those reported from the Carlin-type Bold deposit. Moreover, the oxygen and carbon isotopes show a hydrothermal alteration is widely developed in this area. According to the result of geophysical interpretation, stable isotope, alteration mineralogy, geochemical study, and geological structure, this mineralized zone may be extended to the M direction, so a detailed systematic exploration is required to identify this alteration zone.

Association Analysis of Reactive Oxygen Species-Hypertension Genes Discovered by Literature Mining

  • Lim, Ji Eun;Hong, Kyung-Won;Jin, Hyun-Seok;Oh, Bermseok
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.244-248
    • /
    • 2012
  • Oxidative stress, which results in an excessive product of reactive oxygen species (ROS), is one of the fundamental mechanisms of the development of hypertension. In the vascular system, ROS have physical and pathophysiological roles in vascular remodeling and endothelial dysfunction. In this study, ROS-hypertension-related genes were collected by the biological literature-mining tools, such as SciMiner and gene2pubmed, in order to identify the genes that would cause hypertension through ROS. Further, single nucleotide polymorphisms (SNPs) located within these gene regions were examined statistically for their association with hypertension in 6,419 Korean individuals, and pathway enrichment analysis using the associated genes was performed. The 2,945 SNPs of 237 ROS-hypertension genes were analyzed, and 68 genes were significantly associated with hypertension (p < 0.05). The most significant SNP was rs2889611 within MAPK8 (p = $2.70{\times}10^{-5}$; odds ratio, 0.82; confidence interval, 0.75 to 0.90). This study demonstrates that a text mining approach combined with association analysis may be useful to identify the candidate genes that cause hypertension through ROS or oxidative stress.

Organic Enrichment and Pollution in Surface Sediments from Jinhae and Geoje-Hansan Bays with Dense Oyster Farms (굴양식어장 밀집해역인 진해만과 거제-한산만의 퇴적물 내 유기물 분포특성)

  • Choi, Minkyu;Lee, In-Seok;Hwang, Dong-Woon;Kim, Hyung Chul;Yoon, Sang-Pil;Yun, Sera;Kim, Chung-Sook;Seo, In-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.777-787
    • /
    • 2017
  • Organic enrichment and pollution was investigated in surface sediments from Jinhae Bay and Geoje-Hansan Bay of Korea, which contain the largest oyster farms in Korean coastal areas. Geochemical indicators (chemical oxygen demand, total organic carbon, ignition loss, and acid volatile sulfide) in sediments, ammonium and nitrate in pore water, and bioluminescence inhibition test for sediment extracts were analyzed. Temporal changes of organic enrichment were also investigated using sediment core samples from Geoje-Hansan Bay. The level of organic pollution in sediments from Jinhae Bay was significantly greater than that of sediments from Geoje-Hansan Bay. Compared with other sites, Jinhae Bay was one of the most polluted coastal areas of Korea. The levels of geochemical indicators in May were comparable to, or higher than, in August. Ammonium concentrations in pore water were two orders of magnitudes greater than the nitrate concentrations, suggesting that the bays are reducing environments. The concentrations of total organic carbon in core sediment samples from shellfish-farming areas increased significantly from 2000 to the present year, and it seems to be associated with increases in anthropogenic activities.

Change of fatty acid compositions of rotifer according to enrichment diets and methods in the high density culture (고밀도 배양에 있어서 영양강화 방법 및 종류에 따른 rotifer의 지방산 조성의 변화)

  • PARK Heum Gi;LEE Kyun Woo;LEE Sang-Min;KIM Sung Koo;KIM Hyung Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.748-752
    • /
    • 1999
  • This study was carried out to compare the growth and fatty acids composition of the rotifer (Brachionus rotundiformis) cultured in high density by the various enrichments and culture methods. The rotifer fed on condensed freshwater Chlorella was enriched with $\omega$-yeast, Algamac, Super Selco and marine Chlorella. In another culture method, the rotifer was cultured with enrichment supplements for 6 hours after feeding with condensed freshwater Chlorella supplement for 18 hour. The rotifer fed with condensed marine Chlorella for 24 hours without fieshwater Chlorella was used as a control group. Culture tanks (5 $\ell$ working volume) was immersed in a water bath ($28^{\circ}C$). The density of rotifer and dissolved oxygen level in water was stable in control group of rotifer cultured with condensed marine Chlorella for 24 hours and the n-3 HUFA content of rotifer was the highest among the rotifer culture methods. However, the density of rotifer and dissolved oxygen level in the groups of rotifers enriched with $\omega$-yeast, Algamac and Super Selco by methods were drastically decreased, The n-3 HUFA contents of rotifers enriched by Super Selco were higher than those of rotifer enriched by either $\omega$-yeast or Algamac in both methods. The results from this experiment indicated that supplementation of condensed marine Chlorella for 24 hour by the semi-continuous culture was effective for the improvement of the nutritional value of rotifer and it could provide the stable growth condition for rotifer culture in high density.

  • PDF

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF