• Title/Summary/Keyword: Oxygen consuming

Search Result 32, Processing Time 0.02 seconds

The Usefulness of Rapid Triple Test for Cardiac Marker in Forensic Paragnosis of Sudden Cardiac Death (심장표지물질 간이검사의 급성심장사 법의학적 사후진단 유용성에 관한 연구)

  • Lim, Chae-Won;Kim, Jin-Gak
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • A sudden cardiac death (SCD) is defined as an unnatural sudden death caused by heart disease. To determine the cause of death, observation of the microscopic change in cardiac muscle tissue is suggested, rather than visual postmortem examination. However, this suggestion is time consuming to be applied in the field, is cost-ineffective, and is inconvenient. Therefore, the purpose of this study is to understand whether temporary inspection used to examine the cardiac marker (Myoglobin, CK-MB, cTn I) in postmortem blood via rapid cardiac triple test kit (which is used by clinics to diagnose patients with acute myocardial infarction) can effectively be utilized for the paragnosis of sudden, unnatural cardiac death. The results of postmortem examination and temporary investigation found that 23 groups (76.7%), among the 30 experimental groups, were assumed to be non-traumatic sudden cardiac deaths, which indicated a positive response (according to comparison with forensic autopsy); 4 groups, among the 10 control groups, were assumed to be cerebrovascular disease, which indicated a negative response; 1 group was assumed to be alcoholic and drug poisoning, indicating a positive response; and 1 group was assumed to be oxygen deficiency due to suffocation, indicating a positive response. Hence, it was found that the level of sensitivity and specificity of cardiac marker's temporary inspection showed significant result, 76.7% and 80% respectively. Given this, temporary inspection can be effectively used for the paragnosis of sudden cardiac death when the medical history, situation of the site, and postmortem interval are considered together. With the result of precedent research on time of first revelation and extinction in blood, and difference in concentration over time progress according to the characteristic of cardiac marker's (myoglobin, CK-MB, cTn I) individual material, further research on concentration of cardiac marker per each post time needs to be conducted in order to estimate time science death (which is required to identify the cause of death and investigation).

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.