• 제목/요약/키워드: Oxygen Balance

검색결과 154건 처리시간 0.027초

Oxidative stress and the antioxidant enzyme system in the developing brain

  • Shim, So-Yeon;Kim, Han-Suk
    • Clinical and Experimental Pediatrics
    • /
    • 제56권3호
    • /
    • pp.107-111
    • /
    • 2013
  • Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide ($O2^{\cdot-}$), hydroxyl radical ($OH^{\cdot}$), and hydrogen peroxide ($H_2O_2$). Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.

헬스케어용 실내 자전거 운동에 의한 호흡가스 분석 (Analysis of Respiratory Gas by Training on Healthcare Indoor Bicycle)

  • 홍철운;강형섭;김기범
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권2호
    • /
    • pp.147-152
    • /
    • 2009
  • This study was conducted to observe the change of limbs stroke and respiration gas parameters in our new bicycle fitness system. We hypothesized that the variable force of left and right limbs might be effective for sensing stimulation in modified new unequal pedal bicycle system. It has been developed, which can provide visual information and different length of pedal with left and right limbs. Experimental results showed different activities between the left and right limbs where the activity of the left limb increased than that of right limb. Especially, the soleous muscle activity increased both in control and experimental groups by this training method. But oxygen and carbon dioxide partial pressures in respiratory gas increased during training method. These results suggest that acidosis of blood was led by this process. Consequently, this bicycle training is concluded that aerobic training could affect different limb activities. Finally, we expect that our new bicycle system will be effective for healthcare with proper balance between the left and right limbs.

터보펌프 시동기용 추진제 개발 (Development of Propellant for Turbopump Pyro Starter)

  • 송종권;최성한;홍문근;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2009
  • 우주발사체용 액체추진제 로켓엔진을 시동할 때 사용되는 터보펌프 시동기에 적용하고자 고체추진제 개발 및 특성 평가를 수행하였다. 터보펌프 시동기용 추진제의 배출가스는 기계적인 부식 또는 대기오염 등의 이유로 화염온도가 낮아야 하고 고체입자 잔사 및 독성이 적은 것이 바람직하며, 작동시간이 어느 정도 유지가 되어야 하기 때문에 비교적 낮은 연소속도가 필요하다. 본 연구에서는 PCP계열의 바인더를 사용하고 oxygen balance나 점화성에서 유리한 DHG(Dihydroxy glyoxime)을 냉각제를 사용하는 추진제 조성을 개발하여 연소속도와 기계적 물성 등의 특성평가를 실시하였으며, 최종적으로는 지상연소시험을 통하여 터보펌프 시동기의 성공적인 개발 가능성을 입증하였다.

  • PDF

열량기준 50kW급 매체순환식 가스연소기의 개념설계 및 변수해석 (Conceptual Design of 50 kW thermal Chemical-Looping Combustor and Analysis of Variables)

  • 류호정;진경태
    • 에너지공학
    • /
    • 제12권4호
    • /
    • pp.289-301
    • /
    • 2003
  • 매체순환식 가스연소기의 개발을 위해 산화반응기와 환원반응기가 연계된 2탑 가압순환유동층 조건의 50kWth 매체순환식 가스연소기에 대해 물질수지와 에너지수지를 통한 개념설계를 수행하였다. 매체순환식 가스연소기의 물질수지를 통해 산화반응기는 상승관 형태의 고속유동층 조건으로, 환원반응기는 기포유동층 조건으로 반응기 형태를 결정하였다. 물질수지와 에너지수지에 의해 계산된 층내 고체량, 고체순환량 및 반응기 크기는 장치제작 및 실제조업에 적당한 범위의 값을 나타내었으며 산소공여입자의 반응속도는 만족할 만한 수준에 도달하는 것으로 확인되었다. 본 연구의 개념설계 결과에 의하면 매체순환식 가스연소기의 조업조건은 상용 순환유동층의 조업조건과 유사하였으며 실제공정에 적용하기에 무리가 없는 것으로 사료되었다. 본 연구에서 개발된 설계 tool을 이용하여 시스템의 용량, 조업압력, 산소공여입자 중의금속산화물의 함량, 수증기 주입량, 기체유속 및 고체층 높이 등의 변화에 따른 설계 값의 변화를 해석하였으며 이를 통해 조업조건 변화에 따른 시스템의 성능변화를 예측할 수 있었다.

수동급기 직접 메탄올 연료전지의 동적 모델 (Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell)

  • 하승범;장익황;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Metabolic Analysis of Poly(3-Hydroxybutyrate) Production by Recombinant Escherichia coli

  • WONG, HENG HO;RICHARD J. VAN WEGEN;JONG-IL CHOI;SANG YUP LEE
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.593-603
    • /
    • 1999
  • Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYLl07 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.

  • PDF

오프그리드용 풍력-연료전지 하이브리드 시스템 개발 (Development of WT-FC Hybrid System for Off-Grid)

  • 최종필;박내춘;김상훈;김병희;남윤수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.383-386
    • /
    • 2007
  • This paper describes the design and integration of the wind- fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), storage system and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. The hydrogen is compressed and stored in high pressure tank by hydrogen gas booster system.

  • PDF

Rigorous Model for Spherical Cell-support Aggregate

  • Moon, Seung-Hyeon;Lee, Ki-Beom;Satish J. Paruekar
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제6권1호
    • /
    • pp.42-50
    • /
    • 2001
  • The activity of immobilized cell-support particle aggregates is influenced by physical and biochemical elements, mass transfer, and physiology. Accordingly, the mathematical model discussed in this study is capable of predicting the steady state and transient concentration profiles of the cell mass and substrate, plus the effects of the substrate and product inhibition in an immobilized cell-support aggregate. The overall mathematical model is comprised of material balance equations for the cell mass, major carbon source, dissolved oxygen, and non-biomass products in a bulk suspension along with a single particle model. A smaller bead size and higher substrate concentration at the surface of the particle, resulted in a higher supply of the substrate into the aggregate and consequently a higher biocatalyst activity.

  • PDF

The Tarnish Process of Silver in H2S Environments

  • Kim, H.;Payer, J.H.
    • Corrosion Science and Technology
    • /
    • 제5권6호
    • /
    • pp.206-212
    • /
    • 2006
  • The effects of sub-ppm levels of $H_2S$ and the adsorbed water on the atmospheric corrosion of silver were studied with In situ weight balance to study the effect of the adsorbed water on the kinetic behavior and to determine the rate-controlling step, with XPS to analyze the tarnish film, and with calculation of phase equilibrium to predict the stable solid phase, the concentrations of dissolved species ($Ag^-$, $H^+$, $S^{2-}$, $HS^-$) and the equilibrium potentials ($E_{Ag^+/Ag}$, $E_{H^+/H_2}$, $E_{O_2/O^{2-}$). The results of weight measurements showed that oxygen was required for the sulfidation of silver in 100 ppb $H_2S$ and humidified environments enhanced the tarnished rate and oxidizing power. In addition, the rate determining step for tarnishing silver was shown to be changed to transport though the tarnish film.

SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산 (Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process)

  • 이평종;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.