• Title/Summary/Keyword: Oxy-Fuel

Search Result 124, Processing Time 0.034 seconds

Parametric Analysis of the Performance of Water Recirculated Oxy-Fuel Power Generation Systems (물을 재순환하는 순산소 발전 시스템의 작동조건 변화에 따른 성능해석)

  • Park, Byung-Chul;Sohn, Jeong-Lak;Kim, Tong-Seop;Ahn, Kook-Young;Kang, Shin-Hyoung;Lee, Young-Duk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • In this study, an ideal water-recirculated oxy-fuel power generation system is proposed. The results of parametric studies of the performance characteristics of the system are discussed. For a given choice of the turbine inlet temperature, the turbine, which produces power, can be either a gas or a steam turbine. For maximum efficiency, the turbine inlet temperature is selected as the level of state-of-the-art gas turbines and the reheat cycle may be adopted not only to enhance the turbine power but also to maintain dryness of the water with a turbine exhaust temperature that is as high as possible. To obtain a low condensation temperature for a high purity of $CO_2$, a relatively low pressure expansion process may be added. Finally, the performance of the water-recirculated oxy-fuel power generation system is discussed with reference to various operating parameters and system configurations. The optimal operating conditions for high performance and a high purity of $CO_2$ are proposed.

A Study on the Optimal Process Design of Cryogenic Air Separation Unit for Oxy-Fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 최적공정 설계 연구)

  • Choi, Hyeung-Chul;Moon, Hung-Man;Cho, Jung-ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.647-654
    • /
    • 2018
  • In order to solve the global warming and reduce greenhouse gas emissions, it has been developed the $CO_2$ capture technology by oxy-fuel combustion. But there is a problem that the economic efficiency is low because the oxygen production cost is high. ASU (Air Separation Unit) is known to be most suitable method for producing large capacity of oxygen (>2,000 tpd). But most of them are optimized for high purity (>99.5%) oxygen production. If the ASU process is optimized for low purity(90~97%) oxygen producing, it is possible to reduce the production cost of oxygen by improving the process efficiency. In this study, the process analysis and comparative evaluation was conducted for developing large capacity ASU for oxy-fuel combustion. The process efficiency was evaluated by calculating the recovery rate and power consumption according to the oxygen purity using the AspenHysys. As a result, it confirmed that the optimal purity of oxygen for oxyfuel combustion is 95%, and the power consumption can be reduced by process optimization to 12~18%.

Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model (IEA-CFBC 모델을 이용한 저급탄의 순산소 연소 특성 분석)

  • Gwak, You Ra;Kim, Ye Bin;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.631-640
    • /
    • 2018
  • The application of an oxy-combustion circulating fluidized bed combustor (Oxy-CFBC) for low grade coals has recently developed in the world to meet the continuous increase of energy demand and to achieve the reduction of greenhouse gases. Since demo plants for Oxy-CFBC have been developed, the combustion properties of Oxy-CFBC in various operation conditions, such as gas flow rates, combustion temperature, fuel, and so on, should be investigated to develop design criteria for a commercial Oxy-CFBC. In this study, a computational simulation tool for Oxy-CFBC was developed on the basis of the IEA-CFBC (International Energy Agency Circulating Fluidized Bed Combustor) model. Simulation was performed under various conditions such as reaction temperature ($800^{\circ}C{\sim}900^{\circ}C$), oxygen contents (21%~41%), coal feeding rate, Ca/S mole ratio (1.5~4.0), and so on. Simulation results show that the combustion furnace temperature is higher in oxy 1 than air fired. However, the temperature gradient tended to decrease with increasing oxy mixing percent. In case of $SO_x$, the higher the Ca/S mole ratio and oxy mixing percent, the higher the desulfurization efficiency.

순산소 연소기술

  • Kim, Seong-Cheol
    • Journal of the KSME
    • /
    • v.50 no.9
    • /
    • pp.34-38
    • /
    • 2010
  • $CO_2$ 포집기술은 크게 연소 후 포집(Post-Combustion Capture), 연소 중 포집기술인 순산소 연소(Oxy-Fuel Combustion) 및 연소 전 포집(Pre-Combustion)으로 구분되며, 이 글에서는 기존의 공기연소 대신에 산소만으로 연소하여 배가스 중의 수분을 응축 제거함으로써 $CO_2$를 포집하는 순산소 기술의 국내 외 개발현황 등을 소개한다.

  • PDF

High Temperature Oxidation Behavior of Plasma-sprayed Ti(Al,O)/$Al_2O_3$ Coatings on SS41 Steel (Ti(Al,O)/$Al_2O_3$ 플라즈마 코팅한 SS41의 고온산화 거동)

  • Choi, G.S.;Woo, K.D.;Lee, H.B.;Jeon, J.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2007
  • High velocity oxy-fuel (HVOF) spraying was used to coat Ti(Al,O)/$Al_2O_3$ powder onto the SS41 steel plate. Macrostructure of the coated specimen has been investigated by scanning electron micrograph (SEM). High temperature oxidation behavior of the coated specimen and SS41 steel have been studied. From the results of SEM observation, Ti(Al,O)/$Al_2O_3$ powder was coated well onto the substrate SS41 steel. Porosity onto the coated layer was only 0.38%. The oxidation results showed that Ti(Al,O)/$Al_2O_3$ powder coated SS41 steel have improved little oxidation resistance at $900^{\circ}C$ in air, but improved remarkably oxidation resistance at $800^{\circ}C $ in air compare to the substrate SS41 steel.

Flame Length Characteristic for Varying Nozzle Diameter to Develop Oxy-Fuel Combustor (순 산소 연소기 개발을 위한 노즐직경변화에 따른 화염길이 특성)

  • Kim Ho-Keun;Kim Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.861-867
    • /
    • 2005
  • In order to develop oxy-fuel combustor, the Flame length characteristic of $CH_4$ with oxidizer of air and oxygen has been experimentally investigated for tile nozzle diameters of 1.6mm, 2.7mm, 4.4mm and 7.7mm. The structure of $CH_4$ flame with oxidizer of oxygen was sharp in contrast with the $CH_4$ flame with oxidizer of air. The stability of $CH_4$ flame with oxidizer of oxygen was higher than $CH_4$ flame with oxidizer of air. In all $CH_4$ flames with oxidizer of air and oxygen, the flame length were dependent on the flowrate in laminar flame regime, and in turbulent flame dependent on the initial jet diameter. Using correlation equation of Delichatsios, the flame length has been expected exactly for $CH_4$ flame with oxidizer of air, but underestimated for $CH_4$ flame with oxidizer of oxygen. This paper proposed correlation equation of $CH_4$ flame with oxidizer of oxygen.

High Temperature Oxidation of NiCoCrAlY-(Ta, Re, Ir) Coatings for Gas Turbines (가스터빈 엔진부품용 NiCoCrAlY-(Ta, Re, Ir) 코팅의 고온산화특성)

  • Choi, J.H.;Lee, D.B.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.129-136
    • /
    • 2006
  • The high velocity oxy-fuel sprayed coatings of 38Ni-23Co-20Cr-11Al-3Y-5Ta, 25Ni-34Co-20Cr-11Al-3Y-2Re and 32Ni-34.5Co-22Cr-11Al-0.5Ir (in wt%) were oxidized at 1000 and $1100^{\circ}C$ in air in order to find the alloying effect of Ta, Re and Ir on the oxidation properties of the NiCoCrAlY-base coatings. The primary phase of the coatings was $Ni_3Al$. The oxides formed on the coatings consisted primarily of ${\alpha}-Al_2O_3$, together with some $CoCr_2O_4,\;CoAl_2O_4$, and $Al_5Y_3O_{12}$. Tantalum oxidized to $Ta_2O_5$ and $Ta_2O_{22}$. However, no oxides of Re and Ir were detected by XRD owing to their thermodynamic inertness and/or their small amount.