• Title/Summary/Keyword: Oxy-Fuel

Search Result 124, Processing Time 0.018 seconds

Comparative Study of Char Burn-Out and NOx Emissions in O2/N2 and O2/CO2 environments (순산소 분위기에서 촤 연소 및 질소산화물 배기특성 비교)

  • Lee, Chun-Sung;Kim, Seong-Gon;Lee, Byoung-Hwa;Chang, Young-June;Jeon, Chung-Hwan;Song, Ju-Hun
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-199
    • /
    • 2011
  • The char burn-out and NOx emissions from sub-bituminous coal were investigated in drop tube furnace under $O_2/N_2$ and $O_2/CO_2$ environments with different $O_2$ concentrations of 12, 21 and 31%. Results show that the char burn-out rate is faster as $O_2$ concentration increases higher and char burn-out rate under $O_2/CO_2$ decreases due to the lower oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. NO concentration increases with increasing $O_2$ concentration, but declines at $O_2$ concentration of 31%. Meanwhile, NO emission indexes decreases monotonically with increasing $O_2$ concentration, which indicates that more NO reduction occurs with higher $O_2$ concentration probably due to greater HCN formation. For all conditions of $O_2$ concentration, the NO concentration under $O_2/N_2$ maintains higher than those of $O_2/CO_2$ due to presence of thermal NO.

Experimental Study of Char Oxidation and Kinetic Rate in O2/CO2 and O2/N2 Environments (O2/CO2조건과 O2/N2조건에서의 촤 연소특성 및 산화 반응성에 관한 실험적 연구)

  • Kim, Song-Gon;Lee, Cheon-Seong;Lee, Byoung-Hwa;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1101-1109
    • /
    • 2010
  • We investigated the combustion rate and kinetic rate of char when burning in oxygen-enriched atmospheres with either an $N_2$ or $CO_2$ bath gas in a drop tube furnace. The experiments were performed with sub-bituminous coal (Adaro) and bituminous coal (Coal valley) under atmospheric pressure conditions. Two different coals were investigated over 12 to 30 vol% oxygen and furnace temperatures of 900, 1100, and $1300^{\circ}C$. For both coals, the particle temperature and overall reaction rate are lower in the $CO_2$ bath gas. However, analysis of single-particle data shows that the surface-specific burning rate of char oxidation is similar in both gases. In addition, the kinetic rate and activation energy for each coal were similar for both gases. Generally, the particle temperature and overall reaction rate of sub-bituminous coal are higher than those of bituminous coal.

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.

Wear Property of HVOF WC-CoCr Coating Manufactured by Optimal Coating Process (최적 고속화염용사코팅 공정기술에 의하여 제조된 WC-CoCr 코팅의 마모 특성)

  • Song, Ki O;Cho, Tong Yul;Yoon, Jae Hong;Fang, W.;Youn, Seok Jo;Youn, Kuk Tae;Suh, Chang Hee;Hwang, Soon Young;Ha, Sung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.351-356
    • /
    • 2008
  • Thermally sprayed tungsten carbide-based powder coatings are being widely used for a variety of wear resistance applications. The coating deposited by high velocity processes such as high velocity oxy-fuel (HVOF) thermal spraying is known to provide improved wear resistant property. In this study, optimal coating process (OCP) is obtained by the study of coating properties such as surface hardness, porosity, surface roughness and microstructure of 9 coatings prepared by Taguchi program for 3 levels of four spray parameters. The Friction and wear behaviors of HVOF WC-CoCr coating prepared by OCP, electrolytic hard chrome (EHC) plating and Inconel718 (In718) are investigated by reciprocating sliding wear test at $25^{\circ}C$, $450^{\circ}C$. Friction coefficients (FC) of all of the 3 samples are decreased as increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. FC of WC-CoCr decreases as increasing the surface temperature from $0.33{\pm}0.02$ at $25^{\circ}C$ to $0.26{\pm}0.02$ at $450^{\circ}C$, showing the lowest FC among the 3 samples. Wear trace (WT) and wear depth (WD) of WC-CoCr are smaller than those of EHC and In718 both at $25^{\circ}C$ and $450^{\circ}C$. These show that WC-CoCr is highly recommendable for protective coating on In718 and other metal components.