• 제목/요약/키워드: Oximes

검색결과 35건 처리시간 0.022초

Synthesis, Characterization and Antimicrobial Activity of Zirconium (IV) Complexes

  • Sharma, Shobhana;Jain, Asha;Saxena, Sanjiv
    • 대한화학회지
    • /
    • 제56권4호
    • /
    • pp.440-447
    • /
    • 2012
  • Heteroleptic complexes of zirconium (IV) derived from bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic ${\beta}$-diketones of the general formula ZrLL' (where $LH_2=RCNH(C_6H_4)SC:C(OH)N(C_6H_5)N:CCH_3$, $R=-C_6H_5$, $-C_6H_4Cl(p)$ and $L^{\prime}H_2=R^{\prime}C:(NOH)C:C(OH)N(C_6H_5)N:CCH_3$, $R^{\prime}=-CH_2CH_3$, $-C_6H_5$, $-C_6H_4Cl(p)$ were prepared by the reactions of zirconium tetrachloride with disodium salts of Schiff bases ($L\;Na_2$) and oximes of heterocyclic ${\beta}$-diketones ($L^{\prime}\;Na_2$) in 1:1:1 molar ratio in dry refluxing THF. The structures of these monomeric zirconium (IV) complexes were elucidated with the help of elemental analysis, molecular weight measurements, spectroscopic (IR, NMR and mass) studies. A distorted trigonal bipyramidal geometry may be suggested for these heteroleptic zirconium (IV) complexes. The ligands (bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic ${\beta}$-diketones) and their heteroleptic complexes of zirconium (IV) were screened against A. flavus, P. aeruginesa and E. coli.

급성 유기인계 농약 중독 (Acute Organophosphorus Pesticide Poisoning)

  • 이미진;박준석;홍태용;박성수;유연호
    • 대한임상독성학회지
    • /
    • 제6권2호
    • /
    • pp.83-90
    • /
    • 2008
  • Organophosphate (OP) pesticides are the most common source of human toxicity globally, causing high mortality and morbidity despite the availability of atropine as a specific antidote and oximes to reactivate acetylcholinesterase. The primary toxicity mechanism is inhibition of acetylcholinesterase (AchE), resulting in accumulation of the neurotransmitter, acetylcholine, and abnormal stimulation of acetylcholine receptors. Thus, the symptoms (muscarinic, nicotinic, and central nervous system) result from cholinergic overactivity because of AchE inhibition. OP can also cause rhabdomyolysis, pancreatitis, parotitis, and hepatitis. OP therapy includes decontamination, supportive therapy, and the use of specific antidotes such as atropine and oximes. However, there has been a paucity of controlled trials in humans. Here we evaluated the literature for advances in therapeutic strategies for acute OP poisoning over the last 10 years.

  • PDF

Fe(110) 표면의 피리딘 옥심 결합 메커니즘 및 전자 구조 해명: 전산 연구 (Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: A Computational Study)

  • 하산 르가즈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.255-256
    • /
    • 2023
  • The development of corrosion inhibitors with outstanding performance is a never-ending and complex process engaged in by researchers, engineers and practitioners. Computational assessment of organic corrosion inhibitors performance is a crucial step towards the design of new task-pecific materials. Herein, electronic features, adsorption characteristics and bonding mechanisms of two pyridine oximes, namely 2-pyridylaldoxime (2POH) and 3-pyridylaldoxime (3POH) with the iron surface were investigated using molecular dynamics (MD), and self-consistent-charge density-unctional tight-binding (SCC-DFTB) simulations. SCC-DFTB simulations revealed that 3POH molecule can form covalent bonds with iron atoms in its neutral and protonated states, while 2POH molecule can only bond with iron through its protonated form, resulting in interaction energies of -2.534, -2.007, -1.897, and -0.007 eV for 3POH, 3POH+, 2POH+, and 2POH, respectively. Projected density of states (PDOSs) analysis of pyridines-Fe(110) interactions indicated that pyridine molecules chemically adsorbed on the iron surface.

  • PDF

An Expeditious Room Temperature Stirring Method for the Synthesis of Isoxazolo[5,4-b]quinolines

  • Niralwad, Kirti S.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.805-807
    • /
    • 2011
  • The synthesis of different derivatives of isoxazolo[5,4-b]quinoline by the cyclization reaction of various substituted oximes of quinoline using mild base at ambient temperature. The formation of isoxazolo[5,4-b]quinoline, as a consequence of cheaper and more readily available $K_2CO_3$ and DMF participating in the reaction, is documented.