• 제목/요약/키워드: Oxidizing gas

검색결과 134건 처리시간 0.024초

Field Gas-Sparging Tests for In Situ Aerobic Cometabolism of Trichloroethylene(TCE)

  • Kim Young;Istok Jonathan D.;Semprini Lewis;Oa Sung-Wook
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.54-56
    • /
    • 2006
  • Single-well-gas-sparging tests were developed and evaluated for assessing the feasibility of in-situ aerobic cometabolism of trichloroethylene (TCE), using propane as a growth substrate. To evaluate transport characteristics of dissolved solutes [sulfur hexafluoride (SF6) or bromide (non-reactive tracers), propane (a growth substrate), ethylene, propylene (nontoxic surrogates to probe for CAH transformation activity), and DO], push-pull transport tests were performed. Mass balance showed about 90% of the injected bromide and about 80% of the injected SF6 were recovered, and the recoveries of other solutes were comparable with bromide and slightly higher than SF6. A series of Gas-Sparging Biostimulation tests were performed by sparging propane/oxygen/argon/SF6 gas mixtures, and temporal ground water samples were obtained from the injection well under natural gradient 'drift' conditions. The decreased time for propane depletion and the longer time to deplete SF6 as a conservative tracer indicate the progress of biostimulation. Gas-Sparging Activity tests were performed. .Propane utilization, DO consumption, and ethylene and propylene cometabolism were well demonstrated. The stimulated propane-utilizers cometabolized ethylene and propylene to produce ethylene oxide and propylene oxide, as cometabolic by-products, respectively. Gas-Sparging Acetylene Blocking tests were performed by sparging gas mixtures including acetylene to demonstrate the involvement of monooxygenase enzymes. Gas substrate degradation was essentially completely Inhibited in the presence of acetylene, and no production of the corresponding oxides was also observed. The Gas-Sparging tests supports the evidences that the successive stimulation of propane-oxidizing microorganisms, cometabolic transformation of ethylene and propylene by the enzyme responsible for methane and propane degradation.

  • PDF

나노 금속산화물을 이용한 유단말용 환경 모니터링 서브 시스템 (Environmental Monitoring Sub-System for Ubiquitous Terminal Using Metal Oxide Nano-Material Gas Sensor)

  • 문승언;이홍열;이재우;박종혁;박소정;곽준혁;맹성렬;박강호;김종대
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.63-63
    • /
    • 2008
  • Environmental monitoring sub-system has been developed using gas sensor module, Bluetooth module and PDA phone. The gas sensor module consists of $NO_2or$ CO gas sensor and signal processing chips. Gas sensor is composed of the micro-heater, sensing electrode and sensing material. Metal oxide nano-material was selectively deposited on a substrate with micro-heater and was integrated to the gas sensor module. The change in resistance of the metal oxide nano-material due to exposure of oxidizing or deoxidizing gases is utilized as the principle of this gas sensor operation mechanism. This variation detected in the gas sensor module was transferred to the PDA phone by way of Bluetooth module.

  • PDF

300 kHz 조건에서의 초음파화학적 산화반응에 대한 연속식 가스 주입 효과 (Effect of Gas Sparging on Sonochemical Oxidation in a 300 kHz Sonoreactor)

  • 서지은;손영규
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.642-649
    • /
    • 2018
  • The effect of gas sparging on sonochemical oxidation was investigated in a 300 kHz sonoreactor under various liquid height/volume conditions ($5{\sim}30{\lambda}$, 3.4 ~ 9.0 L), determined by the wavelength of the applied frequency. The electrical input power was maintained constant for all cases . Sonochemical activity drastically decreased from $15{\lambda}$ and the liquid height of $10{\lambda}$ was suggested as the optimal height for 300 kHz without gas sparging. In our previous research, the sonochemical activity observed was five-times higher when air sparging was applied for 36 kHz. On the other hand, no enhancement was obtained at 10, 15, 25 and $30{\lambda}$ using air sparging (1, 3, and 6 L/min) for 300 kHz in this study $20{\lambda}$ and optimization of gas sparging was conducted at $20{\lambda}$ using various gases including air, Ar, $O_2$, $N_2$, and mixtures of Ar and $O_2$. It was found that gas sparging using pure Ar or pure $O_2$ resulted in lower sonochemical activity compared to that of air sparging due to the imbalance between the intensity of cavitation phenomena and the generation of oxidizing radical species. Consequently, the gas mixture of $Ar:O_2$ = 80 % : 20 % (DO saturation ${\approx}100%$) was suggested as an optimal gas sparging condition.

묽은 산 전기분해에 의한 복합 산화제 생성 (Composite Oxidizing Agents Generation Using Electrolysis of Dilute Hydrochloric Acid)

  • 강신영;박종훈;김상현
    • 대한환경공학회지
    • /
    • 제38권6호
    • /
    • pp.329-333
    • /
    • 2016
  • 전기분해에 의한 소독은 소규모 하수처리장, 강우월류수, 선박평형수, 수영장, 양식장 등 염소의 운송, 보관, 사용에 어려움이 있는 곳에 활용될 가능성이 높다. 본 연구에서는 전압(2-5 V), 반응시간(1-10 min), 전해질농도(HCl 0.4-2.2% (w/v), NaCl 5-20 g/L)가 전기분해 산화제(HOCl, $O_3$, $H_2O_2$) 생성 효율에 미치는 영향을 고찰하였다. 회분식 실험 시 투입 전자 대비산화제 전환율(전류 효율)이 가장 높은 최적 조건은 HCl 2.2%, 3 V, 반응 시간 5분이었으며, 이 때의 전류 효율은 99.3%였다. HCl 2.2%, 3 V에서 수행한 연속식 전기분해실험에서는 전류 효율이 97.4% 이상이었으며, NaCl 농도(0-20 g/L) 증가에 따라 주요 산화제인 HOCl의 농도가 비례하여 증가하여 최대 99.8%의 결과를 보였다. 연속식 실험에서 얻은 전기분해수를 이용한 살균실험 결과 5분 안에 92.2% 이상의 총대장균군이 제거되어, 전기분해가 병원성 미생물 소독에 유효하게 사용될 수 있을 것으로 확인되었다.

배연가스의 $NO_x$제거용 코로나 방전장치에서 OH 발광 스펙트럼 측정 및 관련 반응 연구 (Study on the Measurement of Emission Spectrum and Reaction Mechanism of OH Radical in the Nitrogen Corona Discharge System for Removal of $NO_x$ in Flue Gas)

  • 박철웅;한재원;신동남
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.27-38
    • /
    • 1999
  • We constructed a wire-cylinder type pulsed corona discharge system for $NO_x$ removal, which was operated in room temperature. A emission spectrometer was built with a boxcar averager and monochrometer equipped with photo-multiplier tube detector. The sensitivity of the emission spectrometer was greatly improved by synchronizing the emission spectrometer with pulsed corona discharge system using a triggered spark-gap switch. $N_2$ spectrum($c^3{\Pi}_u{\rightarrow}X^1{\Sigma}_g{^+}$) was measured in the range of 300 - 450 nm and oxidizing OH radical emission($A^2{\Sigma}^+{\rightarrow}X^2{\Pi}$) was measured in case $N_2$ was supplied with water bubbling. As wet gas composition of inlet $N_2$ supplied in the discharge system increased, the intensity of OH emission was increased and saturated at wet gas composition 50%. We also investigated additive effect of $C_2H_4,\;H_2O,\;H_2O_2$ on the intensity of OR emission and $NO/NO_2/NO_x$ reduction and analysed the related reaction mechanism in corona discharge process. $H_2O_2$ additive increased the intensity of OH emission and $NO/NO_x$ reduction.

  • PDF

p-GaN/AlGaN/GaN E-mode FET 제작을 위한 선택적 GaN 식각 공정 개발 (Development of Selective GaN etching Process for p-GaN/AlGaN/GaN E-mode FET Fabrication)

  • Jang, Won-Ho;Cha, Ho-Young
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.321-324
    • /
    • 2020
  • In this work, we developed a selective etching process for GaN that is a key process in p-GaN/AlGaN/GaN enhancement-mode (E-mode) power switching field-effect transistor (FET) fabrication. In order to achieve a high current density of p-GaN/AlGaN/GaN E-mode FET, the p-GaN layer beside the gate region must be selectively etched whereas the underneath AlGaN layer should be maintained. A selective etching process was implemented by oxidizing the surface of the AlGaN layer and the GaN layer by adding O2 gas to Cl2/N2 gas which is generally used for GaN etching. A selective etching process was optimized using Cl2/N2/O2 gas mixture and a high selectivity of 53:1 (= GaN/AlGaN) was achieved.

${\gamma}$-$Fe_2O_3$ 세라믹 가스감지소자;비표면이 가스감응성에 미치는 영향 (Effect of Specific urface Area on the Gas Sensitive Properties)

  • 신장욱;박순자
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.1-8
    • /
    • 1986
  • This paper is concerned with a gas sensor composed of semi-conducting ${\gamma}$-$Fe_2O_3$ ceramics made by oxidizing $Fe_2O_3$ sintered body. Acicular $\alpha$-FeOOH powder prepared by precipitation of $FeSO_4$.$7H_2O$ solution was transformed to $FeSO_4$ sintered at 700$^{\circ}$-850$^{\circ}$C for 1 hr. and then oxidized to ${\gamma}$-$Fe_2O_3$ The gas sensitive properties of ${\gamma}$-$Fe_2O_3$ ceramic bodies based on the lectrical resistance change was measured in 0.5-2 vol% $H_2$ and $C_2$ $H_2$ gas at 35$0^{\circ}C$ The specific surface area of sintered specimen largely dependent on the sintering temperature and grain shape directly affected the gas sensitive pro-perties of ${\gamma}$-$Fe_2O_3$gas sensor. Specimens having larger specific surface area showed better sensitivity which means the electrical resistance change due to oxidation and reduction process occurs on ly at the surface of grains microscopically in the ${\gamma}$-$Fe_2O_3$ceramics. Micropores made in $Fe_2O_3$ powder during dehydration of $\alpha$-FeOOH can not prompt the gas sensitive properties of sintered ${\gamma}$-$Fe_2O_3$ because they are sintered or closed in the grains during sintering process and dose not affect the specific surface area of sintered body.

  • PDF

$WO_3$-$SnO_2$박막 센서의 가스감지특성 (Gas-sensing Characteristics of $WO_3$-$SnO_2$Thin-film Sensors)

  • 유광수;김태송
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1180-1186
    • /
    • 2001
  • 고진공 저항 가열식 증발 증착기를 이용하여 약 1$mu extrm{m}$ 두께의 W $O_3$-Sn $O_2$박막 가스센서를 제작하였다. 50$0^{\circ}C$에서 4시간동안 공기중 열처리한 다음, 제조된 박막의 결정성과 미세구조를 관찰하였다. 100 ppm의 산화성 가스인 N $O_2$와 환원성 가스인 CO 가스에 대한 가스 감응 특성을 측정한 결과, N $O_2$가스에 대한 감도( $R_{gas}$/ $R_{air}$)는 기판온도 25$0^{\circ}C$에서 W $O_3$박막이 약 1000으로서 가장 높았으며, CO 가스 감도는 기판온도 15$0^{\circ}C$~25$0^{\circ}C$ 범위에서 약 0.25로 가장 양호하였다.하였다.

  • PDF

저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구 (A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres)

  • 신평우;이구현;남기석;박율민;조형준
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구 (A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors)

  • 한세원;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF