• Title/Summary/Keyword: Oxidizer side

Search Result 20, Processing Time 0.026 seconds

Dilution and Thermal Effects of N2 Addition on Soot Formation in Co-flow Diffusion Flame (동축류 확산화염에서 질소첨가가 Soot발생에 미치는 영향)

  • Eom, Jae-Ho;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.185-191
    • /
    • 2002
  • The influence of N2 addition on soot formation, flame temperature and NOx emissions is investigated experimentally with methane fuel co-flow diffusion flames. The motivation of the present investigation is the differences in NOx reduction reported between fuel-side and oxidizer-side introduction of N2. To determine the influence of dilution alone, fuel was diluted with nitrogen while keeping the adiabatic flame temperature fixed by changing the temperature of the reactants. And to see the thermal effect only, air was supplied at different temperature without N2 addition. N2 addition into fuel side suppressed the soot formation than the case of oxidizer-side, while flame temperature enhanced the soot formation almost linearly. These results reveals the relative influences of the thermal, concentration effects of N2 additives on soot formation In accordance with experimental study, numerical simulation using CHEMKIN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results. Emission test revealed that NOx emissions were affected by not only flame temperature but also N2 addition.

  • PDF

A Numerical Study on the Dynamic Behaviors of Single Vortex in a $CH_4/Air$ Diffusion Flame with Addition of $CO_2$ ($CH_4/Air$ 확산화염에 $CO_2$ 첨가에 따른 단일 와동의 동적 거동에 관한 수치해석)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.68-75
    • /
    • 2002
  • The dynamic behaviors of the single vortex and flame-vortex interaction in a $CH_4/Air$ diffusion flame with addition of $CO_2$ were investigated numerically. The numerical method was based on a predictor-corrector for low Mach number flow. A two-step global reaction mechanism was adopted as a combustion model. Through comparison of results by effect of $CO_2$ added either on the fuel or oxidizer side, it was found that the growth of single vortex and entrainment of surrounding fluid by $CO_2$addition on the fuel side are larger than those by $CO_2$ addition on oxidizer side. Also, when $CO_2$ is added on fuel side, flame-vortex interaction becomes more significant than on air side.

  • PDF

Novel Biocide Controls Biofilm Formation without Adversely Affecting the Papermaking Process

  • Bharti, Shashank;Kim, Hyung-Ju;Kim, Ik-Dong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.67-71
    • /
    • 2006
  • Strong oxidizing biocides are commonly used to control biofilm formation in alkaline papermaking systems. However, paper streams contain many substances that react with or consume oxidizers (e.g., fiber and starch, Therefore, to achieve effective microbiological control, the oxidizer must be overfed to overcome the effect of these substances. When dosed in this manner, the oxidizer can cause many unwanted reactions and adverse side effects, including the consumption of costly papermaking additives increased corrosion rates, and reduced felt life. Some oxidizers also contribute to the formation of halogenated organic compounds. When used for biofilm control, strong oxidizers can cause more problems than they remedy. A patented biocide that effectively controls biofilm without the adverse side effects associated with strong oxidizing biocides is available from Hercules. $Spectrum^{(R)}$ XD3899 Ammonium Bromide Technology, which can be described as a mild oxidizer, is currently used on more than 300 machines globally and has resulted in numerous production and/or machine efficiency records since its introduction in 2001.

  • PDF

Study on synthesis of carbon nanomaterials by hydrogen mixing in counterflow methane diffusion flames (메탄 대향류 확산화염내 수소를 첨가한 탄소나노물질 합성에 관한 연구)

  • Shin, Woo-Jung;Choi, Jung-Sik;Yoon, Seok-Hun;Lee, Hyun-Sik;Choi, Jae-Hyuk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.88-89
    • /
    • 2011
  • The study on synthesis of carbon nanomaterials by H2 mixing in counterflow methane diffusion flames has been experimentally conducted. We have also investigated on effect of catalyst and temperature in flame. The counterflow flame was formed by many kind of gas (fuel side using $CH_4-H_2-N_2$ and oxidizer side $N_2-O_2$) and nitrogen shields discharge on each other side to cut off oxidizer of the atmosphere. Ferrocene was used as a metal catalyst for CNTs synthesis. substrate was used to deposit carbon nanomaterials and these were analyzed by FE-SEM. We could find that carbon nanotubes and many kind of carbon nano materials were formed in Cu wire substrate, through this experiment.

  • PDF

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

Inter Propellant Seal Performance test for 75 ton Class Turbopump (75톤급 터보펌프 추진제 혼합 방지 실의 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.57-64
    • /
    • 2010
  • A performance test of inter propellant seal for a 75 ton class turbopump is conducted using water to evaluate leakage and endurance performance. Each part of fuel pump side and oxidizer pump side for a prototype inter propellant seal has been tested for verifying endurance performance during total accumulated test time 2,100 sec in water. The fuel pump side part with one-stage seal of carbon floating ring shows average leakage rate 13.7 gram/sec under average seal differential pressure 9.4 bar. On the other hand, the oxidizer pump side part with two-stage seal assembly of carbon floating rings shows average leakage rate 7.3 gram/sec under average seal differential pressure 9.5 bar. After the endurance performance test, the inter propellant seal shows good physical condition. A leakage performance test of the inter propellant seal for cryogenic environment will be performed using LN2 in the near future.

A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame (대향류 확산화염의 고온공기 연소특성에 관한 수치해석)

  • Cho, Eun Seong;Kobayashi, Hideaki;Chung, Suk Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF

A Study on the Ignition Characteristics of Liquid Rocket Engine Thrust Chamber with Regenerative Cooling (액체로켓엔진 재생냉각 연소기의 점화 특성 연구)

  • Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • The ignition characteristics of liquid rocket engine thrust chambers which have been developed by domestic technology were analyzed through hot-firing tests. Thrust chambers used in hot-firing tests have different characteristics in terms of the injector for ignition, film cooling method and the position of the oxidizer inlet. Also, these thrust chambers used their respective startup sequences. Analysis results showed that according to temperature profiles of the oxidizer manifold, low frequency fluctuation was appeared in ignition area. This low frequency fluctuation didn't give rise to violent malfunction of the thrust chamber, but the continuous observation as a concern parameter in the side of interfaces with engine system and launch vehicle should be demanded.

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector (전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.