• 제목/요약/키워드: Oxide superlattice

검색결과 11건 처리시간 0.021초

Pulsed laser depostion (PLD)법으로 증착된 $BaTiO_3/SrTiO_3$ 산화물 초격자의 성장 및 유전특성 (Growth and dielectric Properties or $BaTiO_3/SrTiO_3$ oxide artificial superlattice deposited by pulsed laser deposition (PLD))

  • 김주호;김이준;정동근;김용성;이재찬
    • 한국진공학회지
    • /
    • 제11권3호
    • /
    • pp.166-170
    • /
    • 2002
  • $BaTiO_3$(BTO)/$SrTiO_3$(STO) 산화물 인공 초격자가 MgO(100) 단결정 기판위에 Pulsed laser deposition(PLD)법으로 증착되었다. 다층구조에서 BTO/STO 층의 적층 주기는 $BTO_{1\;unit\; cell}/STO_{1\;unit\; cell}$에서 $BTO_{125\;unit\; cell}/STO_{125 \;unit \;cell}$ 두께로 변화시켰고 초격자 전체 두께는 100 m으로 고정시켰다. X-ray 회절 결과는 다양한 주기의 BTO/STO 산화물 박막에서 초격자의 특성을 보였고 투과형 전자 현미경을 통해서 BTO와 STO의 두 층간의 계면에서 상호확산이 일어나지 않고 초격자가 잘 성장된 것을 확인하였다. 초격자의 유전율은 임계 두께 내에서 적층주기가 감소함에 따라 증가하였다. 이러한 초격자의 유전율은 낮은 주기 즉 $BTO_{2\;unit\; cell}/STO_{2\;unit\; cell}$ 주기에서 1230으로 높게 나왔으며 이러한 원인은 격자 변형(c/a ratio)에 기여된 것으로 분석되었다.

Zno 버퍼층을 이용한 자발적 초격자구조를 갖는 IGZO 박막의 결정화 (Crystallization of IGZO thin film with spontaneously formed superlattice structure induced by Zno buffer layer)

  • 서동규;공보현;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.4-4
    • /
    • 2010
  • Single-crystalline IGZO (Indium-Gallium-Zinc oxide) was fabricated on c-sapphire substrate. Single crystal ZnO was used as a buffer layer, and post-annealing was treated in $900^{\circ}C$ for crystallization of IGZO. Crystallized IGZO formed superlattice structure spontaneously induced to c-axis direction by ZnO butTer layer, the composition of IGZO was varied by amount of ZnO. Crystallinity and composition of IGZO was analyzed by X-ray Diffraction and Transmission Electron Microscopy.

  • PDF

Investigation of bias illumination stress in solution-processed bilayer metal-oxide thin-film transistors

  • Lee, Woobin;Eom, Jimi;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.302.1-302.1
    • /
    • 2016
  • Solution-processed amorphous metal-oxide thin-film transistors (TFTs) are considered as promising candidates for the upcoming transparent and flexible electronics due to their transparent property, good performance uniformity and possibility to fabricate at a low-temperature. In addition, solution processing metal oxide TFTs may allow non-vacuum fabrication of flexible electronic which can be more utilizable for easy and low-cost fabrication. Recently, for high-mobility oxide TFTs, multi-layered oxide channel devices have been introduced such as superlattice channel structure and heterojunction structure. However, only a few studies have been mentioned on the bias illumination stress in the multi- layered oxide TFTs. Therefore, in this research, we investigated the effects of bias illumination stress in solution-processed bilayer oxide TFTs which are fabricated by the deep ultraviolet photochemical activation process. For studying the electrical and stability characteristics, we implemented positive bias stress (PBS) and negative bias illumination stress (NBIS). Also, we studied the electrical properties such as field-effect mobility, threshold voltage ($V_T$) and subthreshold slop (SS) to understand effects of the bilayer channel structure.

  • PDF

다층 및 불균일 SiON 박막을 이용한 광간섭필터의 설계 및 제작 (Design and Fabrication Optical Interference Filters using Multiple and Inhomogeneous Dielectric Layers)

  • Lim, Sung kyoo
    • 전자공학회논문지A
    • /
    • 제32A권11호
    • /
    • pp.44-51
    • /
    • 1995
  • Homogeneous, compositionally graded, and superlattice-like silicon oxynitride(SiON) dielectric layers, with the refractive index varying from 1.46 to 2.05 as a function of film thickness, were grown by computer-controlled plasma-enhanced chemical vapor deposition (PECVD) using silane, nitrogen, and nitrous oxide reactant gases. An antireflection(AR) coating and thin-film electroluminescent(TFEL) devices with multiple dielectrics were designed and fabricated using real time control of reactant gases of the PECVD system.

  • PDF

AC Conductivity of $(Sr_{0.75}$,$La_{0.25}$) $TiO_3/SrTiO_3$ Superlattices

  • 최의영;최재두;이재찬
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We have investigated frequency dependant conductivity (or permittivity) of low dimensional oxide structures represented by [($Sr_{0.75}$, $La_{0.25}$)$TiO_3$]$_1$/1$[SrTiO_3]_n$ superlattices. The low dimensional oxide superlattice was made by cumulative stacking of one unit cell thick La doped $SrTiO_3$ and $SrTiO_3$ with variable thickness from 1 to 6 unit cell, i,e, [($Sr_{0.75}$, $La_{0.25}$)$TiO_3$]$_1$/$[SrTiO_3]_n$ (n=1, 2, 3, 4, 5, 6). We found two kinds of relaxation when n is 3 and 4, while, inductance component was observed at n=1. This behavior can be explained by electron modulation in ($Sr_{0.75}$, $La_{0.25}$)$TiO_3/SrTiO_3$ superlattices. When n is 1, electrons by La doping well extend to un-doped layer. Therefore, the transport of superlattices follows bulk-like behavior. On the other hand, as n increased, the doped electrons became two types of carrier: one localized and the other extended. These results in two kinds of transport phase. At further increase of n, most of doped electrons are localized at the doped layer. This result shows that dimensionality of the oxide structure significantly affect the transport of oxide nanostructures.

  • PDF

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Hardness and Oxidation Resistance of Ti0.33Al0.67N/CrN Nano-multilayered Superlattice Coatings

  • Ahn, Seung-Su;Oh, Kyung-Sik;Chung, Tai-Joo;Park, Jong-Keuk
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.49-55
    • /
    • 2019
  • $Ti_{0.33}Al_{0.67}N/CrN$ nano-multilayers, which are known to have excellent wear resistance, were prepared using an unbalanced magnetron sputter to have various periods of 2-5 nm. $Ti_{0.33}Al_{0.67}N$ had a hexagonal structure in a single layer, but converted to a cubic structure by forming a multilayer with CrN, which has a cubic structure. Thus, $Ti_{0.33}Al_{0.67}N$ formed a superlattice in the multilayer. The $Ti_{0.33}Al_{0.67}/CrN$ multilayer with a period of 2.5 nm greatly exceeded the hardness of the $Ti_{0.33}Al_{0.67}N$ and the CrN single layer, reaching 39 GPa. According to the low angle X-ray diffraction results, the $Ti_{0.33}Al_{0.67}N/CrN$ multilayer maintained its as-coated structure to a temperature as high as $700^{\circ}C$ and exhibited hardness of 30 GPa. The thickness of the oxide layer of the $Ti_{0.33}Al_{0.67}N/CrN$ multilayered coating was less than one-tenth of those of the single layers. Thus, $Ti_{0.33}Al_{0.67}N/CrN$ multilayered coating had hardness and oxidation resistance far superior to those of its constituent single layers.

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF