• Title/Summary/Keyword: Oxide module

Search Result 100, Processing Time 0.033 seconds

A study on fabrication of HNS remote sensor module with printed ITO films (ITO 인쇄박막을 이용한 원격 감시형 위험유해물질 검출 센서 모듈 제작에 관한 연구)

  • Lee, Seok-Hwan;Cho, Sung-Min;Kim, Chang-Min;Kim, Hyeong-Ho;Yang, Han-Uk;Oh, Ji-Eun;Chang, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.325-329
    • /
    • 2016
  • In this study, we investigated the feasibility of using printed Indium Tin Oxide (ITO) film as a remote sensor for Hazardous and Noxious Substances (HNS). To improve the quality of the ITO films, binder mixing ratio, Sn concentration in ITO, thermal treatment temperature, and printing process conditions were optimized. We fabricated an electrical resistance-type liquid sensor, and to confirm the sensor operation, the change in resistance in air and seawater was monitored. The change in resistance of the ITO sensor was explained in terms of reduction reaction on the surface. Further, the sensor was controlled by Arduino, and the remote data acquisition was demonstrated.

Effect of MoSe2 on Contact Resistance of ZnO/Mo Junction in Cu(In,Ga)Se2 Thin Film Solar Module (MoSe2가 Cu(In,Ga)Se2 박막 태양전지 모듈의 ZnO/Mo 접합의 접촉 저항에 미치는 영향)

  • Cho, Sung Wook;Kim, A Hyun;Lee, Gyeong A;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.8 no.3
    • /
    • pp.102-106
    • /
    • 2020
  • In this paper, the effect of MoSe2 on the contact resistance (RC) of the transparent conducting oxide (TCO) and Mo junction in the scribed P2 region of the Cu(In,Ga)Se2 (CIGS) solar module was analyzed. The CIGS/Mo junction becomes ohmic-contact by MoSe2, so the formation of the MoSe2 layer is essential. However, the CIGS solar module has a TCO/MoSe2/Mo junction in the P2 region due to structural differences from the cell. The contact resistance (RC) of the P2 region was calculated using the transmission line method, and MoSe2 was confirmed to increase RC of the TCO/Mo junction. B doped ZnO (BZO) was used as TCO, and when BZO/MoSe2 junction was formed, conduction band offset (CBO) of 0.6 eV was generated due to the difference in their electron affinities. It is expected that this CBO acts as a carrier transport barrier that disturbs the flow of current, resulting in increased RC. In order to reduce the RC caused by CBO, MoSe2 must be made thin in a CIGS solar module.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

A 100MHz DC-DC Converter Using Integrated Inductor and Capacitor as a Power Module for SoC Power Management (SoC 전원 관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기)

  • Lee, Min-Woo;Kim, Hyoung-Joong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.31-40
    • /
    • 2009
  • This paper presents a design of a high performance DC-DC boost converter as a power module for SOC designs. It applied to this chip that reduced inductor and capacitor for integrating on a chip, and it operates with a switching frequency of 100MHz. It has reliability and stability in high switching frequency. The controller of DC-DC boost converter is designed by voltage-mode control method and compensated properly. The designed DC-DC converter is fabricated with the 0.18${\mu}m$ standard CMOS technology with a thick-gate oxide option. The overall die size is 8.14$mm^2$, and controller size is 1.15$mm^2$. The converter has the maximum efficiency over 76% for the output voltage of 4V and load current larger 300mA. The load regulation is 0.012% (0.5mV) for the load current change of 100mA.

A Characteristic Study on the Dye-Sensitized Solar Cell by the Shadow Effect (그림자 효과에 의한 염료감응형 태양전지의 특성연구)

  • Kim, Hee-Je;Lee, Jeong-Gee;Lee, Kyung-Jun;Prabakar, Prabakar;Sin, Dong-Seoul;Chae, Won-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.144-151
    • /
    • 2010
  • The shadowing effects lead to the serious power losses of the PV module. The shadowing effects are caused by several factors such as leafs, dust, antenna and clouds. The dye-sensitized solar cells are more economical than the conventional silicon solar cell that's why the dye-sensitized solar cells are recently focused on. We carried out research on the efficiency of the dye-sensitized solar cell depending on the level of shadow changing the formula of the circuit. The research on the efficiency of the large dye-sensitized solar cell depending on the level of shadow focused on commercialization was carried out. As the results, it is known that the series and parallel connection method is the best choice for the least losses of PV module assemblies. It is especially known that one more series connection is the best choice for the least losses about shadowing effects and current losses in the series and parallel connection.

Two phase driver manufacture of Hybrid type Linear Pulse Motor and estimation (하이브리드형 선형펄스모터의 2상 구동드라이버 제작 및 평가)

  • Kim, Dong-Hee;Ahn, Jae-Young;Kang, Geon-Il;Kim, Kwang-Heon;Lim, Young-Cheol;Park, Sung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.28-30
    • /
    • 2007
  • Need analysis of correct thrust for control performance improvement of HB-LPM (Hybrid type Linear Pulse Motor). It is difficult to analyze HB-LPM's thrust. In this paper, HB-LPM's thrust is expressed to mathematical expression. And it is proved validity of this numerical formula by thrust measurement system. Two phase driver is composed. It is verified validity of numerical formula that measure waveform of electric current and voltage that is supplied in each Phase. In this study, composed two phase drive driver, advantage of this IGBT element 6 by accumulated IPM module 1 Driver composition possible. That is, can economize 1 module. In other words, Driver composition is available by IGBT or metal oxide semiconductor field effect transistor element 4. This is economical big gains.

  • PDF

Workers' Possible Exposure Hazards in Solar Energy Industries (결정질 실리콘 기반 태양광산업에서의 근로자노출 가능 유해인자)

  • Jang, Jae-Kil;Park, Hyunhee
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.24-33
    • /
    • 2013
  • Renewable energy industries, including sola cell plants, has been ever increasing ones for reducing fossil fuel consumption and strengthening national energy policy. In this paper we tried to identify occupational health hazards in solar cell-related industries operated in Korea. Poly silicon, silicon ingot and wafer, solar cell and module are major processes for producing solar cells. Poly silicon operations may cause hazards to workers from metal silicon, silanes, silicon, hydro fluoric acid and nitric acid. Solar cells could not be constructed without using metals such as aluminum and silver, acids such as hydrofluoric acid and nitric acid, bases such as sodium hydroxide and potassium hydroxide, and solvent and phosphorus chloride oxide. Workers in module assembly process may exposed to isopropanol, flux, solders that contain lead, tin and/or copper. To prevent occupational exposure to these hazards, it is essential to identify the hazards in each process and educate workers in industries with proper engineering and administrative control measures.

Effect of two way thermal hydraulic-fuel performance coupling on multicycle depletion

  • Awais Zahur;Muhammad Rizwan Ali;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4431-4446
    • /
    • 2023
  • A Multiphysics coupling framework, MPCORE, has been developed to analyze safety parameters using the best estimate codes. The framework contains neutron kinetics (NK), thermal hydraulics (TH), and fuel performance (FP) codes to analyze fuel burnup, radial power distribution, and coolant temperature (Tbc). Shuffling and rotation capabilities have been verified on the Watts Bar reactor for three cycles. This study focuses on two coupling approaches for TH and FP modules. The one-way coupling approach involves coupling the FP code with the NK code, providing no data to the TH modules but getting Tbc as boundary condition from TH module. The two-way coupling approach exchanges information from FP to TH modules, so that the simplified heat conduction solver of the TH module is not used. The power profile in both approaches does not differ significantly, but there is an impact on coolant and cladding parameters. The one-way coupling approach tends to over-predict the cladding hydrogen concentration (CHC). This research highlights the difference between one-way and two-way coupling on critical boron concentration, Tbc, CHC, oxide surface temperature, and pellet centerline temperature. Overall, MPCORE framework with two-way coupling provides a more accurate and reliable analysis of safety parameters for nuclear reactors.

Studies on the Optimization of Contact Oxide Etching Process Using Taguchi Method (Taguchi 방법을 사용한 콘택 산호막 식각 공정 최적화 연구)

  • Jeon, Yeong-Jin;Kim, Chang-Il;Gu, Jin-Geun;Yu, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.63-74
    • /
    • 1995
  • Process optimization experiments based on the Taguchi method were performed in order to set up the optimal process conditions for the contact oxide etching process module which was built in order to be attached to the cluster system of multi-processing purpose. From the two times experiments of Taguchi method, the overall behaviors of the etchmg characteristics depending upon the equipment parameters were understood at the 1st Taguchi experiment, the detail and optimal process conditions were extracted from the 2nd Taguchi experiment. As a final analysis of experimental results, the optimal etching characteristics were obtalned at the process conditions of $CHF_{3}/CF_{4}$ gas flow rate=72/8 sccm, chamber pressure=50 mTorr, RF power=300 Watts, magnetic field intensity=90 Gauss.

  • PDF

Development of Copper and Copper Oxide Removal Technology Using Supercritical CO2 and Hexane for Silicon Solar Cell Recycling (실리콘 태양전지 재자원화를 위한 초임계 CO2 및 헥산을 이용한 구리 및 산화구리 제거기술 개발)

  • Lee, Hyo Seok;Cho, Jae Yu;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Lifetime of Si photovoltaics modules are about 25 years and a large amount of waste modules are expected to be discharged in the near future. Therefore, the extraction and collection of valuable metals out of discharged Si modules will be one of the important technologies. In this study, we demonstrated that supercritical $CO_2$ extraction method can be effectively used to remove Cu, one of the abundant elements in the module, as well as its oxide form, $Cu_2O$. Especially, we proved that the addition of hexane as co-solvent is effective for the removal of both materials. The optimal ratio of $CO_2$ and hexane was 4:1 at a fixed temperature and pressure of $250^{\circ}C$ and 250 bar, respectively. In addition, it was proven that the removal of $Cu_2O$ was preceded via reduction of $Cu_2O$ to Cu.