• Title/Summary/Keyword: Oxidative stability

Search Result 417, Processing Time 0.021 seconds

Oxidative Stability of Green Tea-Added Mayonnaise (녹차를 첨가한 마요네즈의 산화안정성)

  • 박찬성;박어진
    • Korean journal of food and cookery science
    • /
    • v.18 no.4
    • /
    • pp.407-412
    • /
    • 2002
  • The purpose of this study was to investigate the oxidative stability of green tea-added mayonnaise during storage at 5, 15 and 25$\^{C}$. Mayonnaise was prepared with salad oil, egg yolk, sugar, salt and vinegar, and added with 0.1, 0.3 and 0.5% of green tea powder for experiment. Peroxide values (POV) of each mayonnaise were compared during storage for 13 weeks. POVs of control mayonnaise stored at 5, 15 and 25$\^{C}$ for 13 weeks were 28.0, 63.5 and 144.4 meq/kg, respectively. Oxidative stability of green tea-added mayonnaise was increased with increasing concentration of green tea in mayonnaise, but it was decreased with increasing storage temperature. The addition of green tea at 0.5% extended the induction period of mayonnaise significantly (p<0.05) at each temperature. Relative antioxidant effect (RAE) of mayonnaise containing 0.1% of green tea were 226%, 188% and 143% during storage at 5, 15 and 25$\^{C}$, respectively, and it was increased with increasing green tea concentration in mayonnaise. The results suggested that the use of green tea is valuable to inhibit the oxidation of mayonnaise as a natural antioxidant.

Effect of the Mixing Extraction of Perilla Seed and Peanut on Physicochemical Characteristics and Oxidative Stability of Perilla Oil (들께와 땅콩의 혼합 채유가 들기름의 이화학적 특성 및 산화안정성에 미치는 영향)

  • 권용주;김충기;오현화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1212-1219
    • /
    • 1999
  • The oils were extracted from the mixture of roasted(for 20 min at 190oC) perilla seeds(RPS) and roasted (commercially) peanuts(RPN) by solvent extraction(SE) and mechanical expression(ME). The effects of mixing ratio on physicochemical characteristics and oxidative stability of their oils were investigated. Yields of both SE and ME oils were increased as the RPN ratio in the mixture increased. In all the SE and ME oils, the major fatty acids were oleic, linoleic and linolenic acid, and total saturated fatty acids increased gradually, but total unsaturated fatty acids decreased gradually as the RPN ratio in the mixture was increased. The specific gravity and refractive index of both SE and ME oils decreased as the RPN ratio in the mixture was increased. Acid value, saponification value and iodine value of SE oils decreased as the RPN ratio in the mixture increased, whereas acid value and iodine value of ME oils decreased and saponification value increased. The colors of ME oils were darker brownish than SE oils. The oxidative stability of SE oils was decreased as the RPN ratio in the mixture increased, whereas that of ME oils was increased. Sensory evaluation of all the oils extracted from the mixture with various mixing ratio showed significant differences in flavor, taste, color and overall acceptance(p<0.01). The oil extracted from the mixture of the mixing ratio of 8:2(RPS:RPN) showed slightly higher preference regardless of extraction method.

  • PDF

Effects of Raising Altitude on the Fatty Acid Composition, Aroma Pattern, Color, and Oxidative Stability of M. Longissimus from Hanwoo Steers

  • Panjono, Panjono;Kang, Sun-Moon;Lee, Ik-Sun;Lee, Sung-Ki
    • Food Science of Animal Resources
    • /
    • v.29 no.2
    • /
    • pp.245-251
    • /
    • 2009
  • This study was carried out to investigate the fatty acid composition, aroma pattern, color, and oxidative stability of M. longissimus from 28-mon-old Hanwoo steers with different raising altitude (100, 200, 300, 400, 700, and 800 m above sea level). The samples were stored at $2{\pm}0.2^{\circ}C$ for 9 d. Meat from 700 and 800m had lower palmitic acid, saturated fatty acids and higher oleic acid, monounsaturated fatty acids (MUFA) than that from 100 m (p<0.05). There was no positive discrimination of the aroma pattern of meat among all groups. There were no significant difference in TBARS values of beef among all groups at 6 and 9 d of storage. At 9d of storage, meat from 700m showed the highest MetMb concentration and the lowest a* value among all groups. However, the differences in Mb concentration and color among groups were not linear to the difference in raising altitude. Consequently, the difference in raising altitude at 100-800 m affected the fatty acid composition of meat from Hanwoo steers; the higher the raising altitude, the higher the MUFA concentration. The difference in fatty acid composition among them didn't affect the aroma pattern and oxidative stability.

Effect of Electron Benm Irradiation on the Oxidative and Microbiological Stability of Ground Pork during Storage (전자선 조사가 분쇄 돈육의 저장 중 산화와 미생물적 안정성에 미치는 영향)

  • Koh, Kwang-Hwan;Whang, Key
    • Food Science of Animal Resources
    • /
    • v.22 no.4
    • /
    • pp.316-321
    • /
    • 2002
  • Fresh ground pork was irradiated with the electron beam, and the microbiological and oxidative stability of ground pork was examined during refrigerated and frozen storage. During both storage, with the increase in the irradiation dose from 0 to 3.0 kGy, the inhibition effect of the growth of the total aerobic bacteria and the mesophiles also increased. Psychrotrophic bacteria were not detected at all in the whole experiment. On the other hand, electron beam irradiation promoted the oxidative rancidity of ground pork during refrigerated and frozen storage. The catalytic effect of oxidation was more pronounced with the electron beam dose of 3.0 than that of 1.5 kGy. As a result, the control of lipid oxidation must be achieved to fully utilize the sterilization effect of electron beam in the ground pork.

Effect of Amine-Based Antioxidants as Stabilizers for Biodiesel (바이오디젤용 산화방지제인 아민안정제들의 효과)

  • Park, Soo-Youl;Kim, Hun-Soo;Kim, Seung-Hoi
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2015
  • Biodiesel is an environmentally-friendly fuel with low smoke emission because it contains about 10% oxygen. Biodiesel fuel prepared by transesterification of vegetable oil or animal fats is susceptible to auto-oxidation. The rate of auto-oxidation depends on the number of methylene double bonds contained within the fatty acid methyl or ethyl ester groups. Biodiesel may be easily oxidized under several conditions, i.e., upon exposure to sunlight, temperature, oxygen environment. Maintenance of the fuel quality of biodiesel requires the development of technologies to increase the resistance of biodiesel to oxidation. Treatment with antioxidants is a promising approach for extending the shelf-life or storage time of biodiesel. The chemical properties of various amine-based antioxidants were evaluated after synthesis of the antioxidants by condensation of phenylenediamine with alkylamines at room temperature. In general, the oxidative stability can be assessed based on various experimental parameters. Such parameters may include temperature, pressure, and the flow rate of air through the samples. The Rancimat method (EN14112) was selected because it is a rapid technique that requires very little sample and provides good precision for oxidative degradation analysis. Specifically, the EN 14112 technique provides enhanced efficiency for oxidative stability evaluation when a larger ester head group is utilized. Therefore, this technique was employed for evaluation of the oxidation stability of biodiesel by the Rancimat method (EN14112).

Fatty acid composition of goose meat depending on genotype and sex

  • Uhlirova, Linda;Tumova, Eva;Chodova, Darina;Volek, Zdenek;Machander, Vlastislav
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.137-143
    • /
    • 2019
  • Objective: The aim of this study was to compare male and female geese of two contrasting genotypes in terms of fatty acid composition, indexes related to human health, lipid metabolism and oxidative stability of the meat. Methods: The experiment was carried out on total of 120 geese of two different genotypes; the native breed Czech goose (CG) and commercial hybrid Novohradska goose (NG). One-d-old goslings were divided into 4 groups according to genotype and sex, and 8 birds from each group were slaughtered at 8 weeks of age. Results: The effects of the interactions between genotype and sex were observed on growth performance and carcass traits. Final body weight (p<0.001), daily weight gain (p<0.001), daily feed intake (p<0.001), slaughter weight (p<0.001), and cold carcass weight (p<0.001) were highest in NG males and lowest in CG females. The meat fatty acid composition results showed effects of both genotype and sex on the total n-6 and the total polyunsaturated fatty acid (PUFA) content, as well as the PUFA n-6/PUFA n-3 ratio. Regarding genotype, the total n-6, the total PUFA content and the PUFA n-6/PUFA n-3 ratio were higher in CG, and higher values were found in females. In terms of the lipid metabolism, ${\Delta}^5-{\Delta}^6$ desaturase (p = 0.006) was higher in males. The meat oxidative stability results revealed an interaction between genotype, sex and storage time (p<0.001). The highest (13.85 mg/kg) malondialdehyde content was measured in the meat of CG females after 5 days of storage and was presumably related to a higher PUFA content. Conclusion: NG had a relatively higher growth rate and meat oxidative stability, whereas the advantage of CG meat is its favourable fatty acid profile characterized by a higher PUFA content.

Physicochemical attributes, oxidative stability, and microbial profile of boneless sirloin and bone-in T-bone steaks from Hanwoo steer with reference to dry-aging

  • Ali, Mahabbat;Nam, Ki-Chang
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1169-1181
    • /
    • 2021
  • We investigated the comparative physicochemical attributes, oxidative stability, and microbial characteristics of 28 days dry-aged meat in between boneless sirloin (gluteus medius) and bone-in T-bone steaks (infraspinatus) muscles from Korean Native Hanwoo Steer (KNHS). Results reveal that regardless of the muscles, dry-aging increased protein content and water-holding capacity (WHC) (p < 0.05). Meat from infraspinatus-aged muscle led to darker meat with higher pH values than un-aged meat (p < 0.05). However, fat content, CIE a*, and CIE b* remained unchanged in both muscles at aging. At aged meat, thiobarbituric acid reactive substances (TBARS) values from bone-in infraspinatus muscle was 2.5-fold higher than boneless gluteus medius muscle (p < 0.05). Dry-aging led to an increase in the contents of total unsaturated fatty acids (UFAs), monounsaturated fatty acids (MUFAs), and UFA/saturated fatty acids (SFA) in both muscles (p < 0.05). Furthermore, gluteus medius aged muscle concentrated with olic acid (C18:1) compared to infraspinatus aged muscle. Irrespective of the muscles, dry-aging enhanced the total free amino acids (FAAs) as well as tasty, and bitter amino acid contents whereas decreased the tasty/bitter amino acids (p < 0.05). Aromatic amino acid, tryptophan that converted to serotonin was 2-fold higher in boneless gluteus medius muscle than bone-in infraspinatus muscle at pre and post aging processes (p < 0.05). Aged Infraspinatus muscle increased total bacteria (p < 0.05) while no salmonella spp. was detected in both muscles. Taken together, our study confirms that 28 days dry-aging profiling the quality characteristics of boneless sirloin (gluteus medius) and bone-in T-bone steaks (infraspinatus) distinctly while gluteus medius aged steak performs better owing to oxidative stability and functional compounds than infraspinatus aged steak.

Investigations on Eco Friendly Insulating Fluids from Rapeseed and Pongamia Pinnata Oils for Power Transformer Applications

  • Thanigaiselvan, R.;Raja, T. Sree Renga;Karthik, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2348-2355
    • /
    • 2015
  • Transformer mineral oil which is normally hydrocarbon based is non- biodegradable and pollutes the environment in all aspects. Though vegetable oils are eco-friendly in nature and potentially could be used in transformers as a replacement for the mineral oil, there usage is restricted because of their oxidative instability. The present work focuses on using rapeseed oil and pongamia (pongamia pinnata) oil as effective alternatives for the traditional mineral oil in power transformer. The oxidative stability of the rapeseed oil and pongamia oil is increased by using combinations of the natural and synthetic anti-oxidants as additives. The parameters like breakdown voltage, viscosity, flash point, fire point are measured for the rapeseed oil and pongamia oil with and without the additives as per IEC and ASTM standards. The results shown encouraging changes in the parameter values and ensures the use of the oils as a potential alternative insulation in power transformers.

Study on the Oxidative Stability of Korean Evening Primrose Oil (한국산 달맞이꽃 종자유의 산화안정성에 관한 연구)

  • 표영희;김인숙;안명수
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.27-34
    • /
    • 1989
  • In the present study, the oxidative stability of Korean evening primrose oil (EPO) stored in various conditions, i.e., dark, cool, fluorescent light and daylight irradiation were investigated. Furthermore difference between the compositional content of gamma-linolenic acid (GLA) of EPO and that of alpha-linolenic acid of soybean oil (SOY) undergoing various modes of oxidation was observed. The results of the present study were as follows: More rapid autoxidative reations of EPO than that of SOY in vairous conditions increased in order of daylight, fluorescent light, cool and dark. Espectially, autoxidative rates of EPO increased rapidly on exposure to daylight and fluorescent light. This probably was due to chlorophyll functioned as a photosensitizer resulting in rapid oxidation of the EPO during irrdadiation of light. However, there was no difference between compositional content of GLA in EPO and alpha-linolenic acid in SOY undergoing various modes of oxidation. Therefore, theripid oxidative rate of EPO could be due to the catalytic effect of the chlorophyll on the photoxidation and the free radical reaction of PUFA.

  • PDF

Microbiological and Oxidative Stability of Low Fat Ground Beef during Refrigeration (취반 재고미를 첨가하여 제조한 저지방 분쇄우육의 냉중중 안정성)

  • 김혁일
    • Food Science of Animal Resources
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 1998
  • Four low fat ground beef groups containing 10% fat plus 0, 5, 10 and 20% additional cooked lod rice and a control ground beef containing 30% fat were prepared and the analysis for microbiological and oxidative stability were conducted. During 6 days of storage at 4$^{\circ}C$ microbial analysis including total plate count and coliform groups were performed and 2-thiobarbituric acid reactive substance (TBARS) absorbances were measured. The growth rate of total aerobic bacteria and coliform groups tended to increase with the increase in fat content and the amount of added cooked lod rice. Development of oxidative rancidity were not significantly different between 10 and 30% fat ground beef but among the 10% ground beef the rancidity development significantly(p<05) decreased with the in-crease in the amount of added cooked old rice. Low fat ground beef groups were not stable over 3 days during storage at 4$^{\circ}C$.

  • PDF