• 제목/요약/키워드: Oxidative burst

검색결과 50건 처리시간 0.031초

Effect of the Inhibition of PLA2 on Oxidative Lung Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man;Cho, Hyun-Gug;Park, Yoon-Yub;Kim, Jong-Ki;Lee, Yoon-Jeong;Park, Won-Hark;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.617-628
    • /
    • 1998
  • In order to understand the pathogenetic mechanism of adult respiratory distress syndrome (ARDS), the role of phospholipase A2 (PLA2) in association with oxidative stress was investigated in rats. $Interleukin-1{\alpha}\;(IL-1,\;50\;{\mu}g/rat)$ was used to induce acute lung injury by neutrophilic respiratory burst. Five hours after IL-1 insufflation into trachea, microvascular integrity was disrupted, and protein leakage into the alveolar lumen was followed. An infiltration of neutrophils was clearly observed after IL-1 treatment. It was the origin of the generation of oxygen radicals causing oxidative stress in the lung. IL-1 increased tumor necrosis factor (TNF) and cytokine-induced neutrophil chemoattractant (CINC) in the bronchoalveolar lavage fluid, but mepacrine, a PLA2 inhibitor, did not change the levels of these cytokines. Although IL-1 increased PLA2 activity time-dependently, mepacrine inhibited the activity almost completely. Activation of PLA2 elevated leukotriene C4 and B4 (LTC4 and LTB4), and 6-keto-prostaglandin $F2{\alpha}\;(6-keto-PGF2{\alpha})$ was consumed completely by respiratory burst induced by IL-1. Mepacrine did not alter these changes in the contents of lipid mediators. To estimate the functional changes of alveolar barrier during the oxidative stress, quantitative changes of pulmonary surfactant, activity of gamma glutamyltransferase (GGT), and ultrastructural changes were examined. IL-1 increased the level of phospholipid in the bronchoalveolar lavage (BAL) fluid, which seemed to be caused by abnormal, pathological release of lamellar bodies into the alveolar lumen. Mepacrine recovered the amount of surfactant up to control level. IL-1 decreased GGT activity, while mepacrine restored it. In ultrastructural study, when treated with IL-1, marked necroses of endothelial cells and type II pneumocytes were observed, while mepacrine inhibited these pathological changes. In histochemical electron microscopy, increased generation of oxidants was identified around neutrophils and in the cytoplasm of type II pneumocytes. Mepacrine reduced the generation of oxidants in the tissue produced by neutrophilic respiratory burst. In immunoelectron microscopic study, PLA2 was identified in the cytoplasm of the type II pneumocytes after IL-1 treatment, but mepacrine diminished PLA2 particles in the cytoplasm of the type II pneumocyte. Based on these experimental results, it is suggested that PLA2 plays a pivotal role in inducing acute lung injury mediated by IL-1 through the oxidative stress by neutrophils. By causing endothelial damage, functional changes of pulmonary surfactant and alveolar type I pneumocyte, oxidative stress disrupts microvascular integrity and alveolar barrier.

  • PDF

In Vitro에서 개 말초혈액 백혈구의 순간산소과소비현상에 대한 케타민의 효과 (Effect of Ketamine on the Oxidative Burst Activity of Canine Peripheral Blood Leukocytes In Vitro)

  • 김민준;강지훈;양만표
    • 한국임상수의학회지
    • /
    • 제23권4권
    • /
    • pp.393-399
    • /
    • 2006
  • 전신마취제인 케타민은 흥분성 아미노산의 활성을 방해하는 N-methyl-D-aspartate (NMDA) 수용체의 비경쟁적인 길항제이다. 본 연구는 개 말초혈액 백혈구의 순간산소과소비현상(Oxidative burst activity; OBA)에 있어서 케타민의 효과를 검토하였다. 탐식세포의 OBA는 유세포 분석기로 분석하였다. 케타민을 말초혈액 다형핵백혈구(peripheral blood polymorphonuclear cells; PMN)와 monocyte-rich cells에 직접처리 하였을 때는 OBA가 감소하였으며, 또한 케타민을 처리한 말초혈액 단핵구세포(peripheral blood mononuclear cells; PBMC) 배양상층액에 의해서도 PMN과 monocyte-rich cells의 OBA가 감소하였다. 그러나 케타민을 처리한 PMN 배양상층액에 의해서는 탐식세포의 OBA에 있어서 아무런 변화가 없었다. 하지만 이러한 OBA의 감소는 latex beads를 넣어 탐식반응이 일어날 때만 측정되었다. 이상의 결과로부터 탐식반응이 일어나는 동안 케타민은 호중구와 단핵구와 같은 개 말초혈액 탐식구의 OBA에 있어 억제효과를 나타내었다.

Effect of the Inhibition of Platelet Activating Factor on Oxidative Lung Injury Induced by Interleukin-$1\;{\alpha}$

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.479-491
    • /
    • 1998
  • In order to know the pathogenesis of adult respiratory distress syndrome (ARDS) in association with the oxidative stress by neutrophils, the role of platelet activating factor (1-0-alkyl-2-acetyl-snglycero-3-phosphocholine, PAF) was investigated during acute lung injury induced by interleukin- $1{\alpha}$ (IL-1) in rats. An insufflation of IL-1 into the rat's trachea increased the acetyltransferase activity in the lung and the increase of PAF content was followed. As evidences of acute lung injury by neutrophilic respiratory burst, lung leak index, myeloperoxidase activity, numbers of neutrophils in the bronchoalveolar lavage fluid, neutrophilic adhesions to endothelial cells and NBT positive neutrophils were increased after IL-1 treatment. In addition, a direct instillation of PAF into the trachea caused acute lung leak and the experimental results showed a similar pattern in comparison with IL-1 induced acute lung injury. For the confirmation of oxidative stress during acute lung leak by IL-1 and PAF, a histochemical electron microscopy was performed. In IL-1 and PAF treated lungs of rats, the deposits of cerrous perhydroxide were found. To elucidate the role of PAF, an intravenous injection of PAF receptor antagonist, WEB 2086 was given immediately after IL-1 or PAF treatment. WEB 2086 decreased the production of hydrogen peroxide and the acute lung leak. In ultrastructural study, WEB 2086 mitigated the pathological changes induced by IL-1 or PAF. The nuclear factor kappa B (NFkB) was activated by PAF and this activation was inhibited by WEB 2086 almost completely. Based on these experimental results, it is suggested that the PAF produced in response to IL-1 through the remodeling pathway has the major role for acute lung injury by neutrophilic respiratory burst. In an additional experiment, we can also come to conclude that the activation of the NFkB by PAF is thought to be the fundamental mechanism to initiate the oxidative stress by neutrophils causing release of proinflammatory cytokines and activation of phospholipase $A_2$.

  • PDF

Role of the PLA2-Activated Neutrophilic Oxidative Stress in Oleic Acid-Induced Acute Lung Injury

  • Lee, Young-Man;Kim, Byung-Yong;Park, Yoon-Yub
    • Tuberculosis and Respiratory Diseases
    • /
    • 제68권2호
    • /
    • pp.55-61
    • /
    • 2010
  • Background: The underlying pathogenesis of fat embolism-induced acute lung injury (ALI) has not been elucidated. In the present study, the pathogenesis of fat embolism-induced ALI was probed in association with neutrophilic oxidative stress in oleic acid (OA)-induced ALI of S-D rats. Methods: OA was injected intravenously to provoke ALI in experimental rats. Five hours later, indices of ALI were measured to confirm the role of the neutrophilic respiratory burst. The effect of an inhibition of phospholipase A2 (PLA2) was also evaluated. Results: The accumulation of neutrophils in the lung due to OA caused increased neutrophilic oxidative stress in lung, which was ameliorated by mepacrine. What were the results from inhibition of PLA2. Conclusion: Excess neutrophilic oxidative stress contributes to OA-induced ALI, which is lessened by the inhibition of PLA2.

Effect of the Inhibition of Phospholipase $A_2$ in Generation of Free Radicals in Intestinal Ischemia/Reperfusion Induced Acute Lung Injury

  • Lee, Young-Man;Park, Yoon-Yub;Kim, Teo-An;Cho, Hyun-G.;Lee, Yoon-Jeong;Repine, John E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.263-273
    • /
    • 1999
  • The role of phospholipase $A_2\;(PLA_2)$ in acute lung leak induced by intestinal ischemia was investigated in association with neutrophilic respiratory burst. To induce lung leak, we generated intestinal ischemia for 60 min prior to the 120 min reperfusion by clamping superior mesenteric artery in Sprague-Dawley rats. Acute lung leak was confirmed by the increased lung leak index and protein content in bronchoalveolar fluid. These changes were inhibited by mepacrine, the non-specific $PLA_2$ inhibitor. The lung myeloperoxidase (MPO) activity denoting the pulmonary recruitment of neutrophils was increased by intestinal I/R, but decreased by mepacrine. Simultaneously, the number of leukocytes in bronchoalveolar fluid was increased by intestinal ischemia/reperfusion (I/R) and decreased by mepacrine. Gamma glutamyl transferase activity, an index of oxidative stress in the lung, was increased after intestinal I/R but decreased by mepacrine, which implicates that $PLA_2$ increases oxidative stress caused by intestinal I/R. The $PLA_2$ activity was increased after intestinal I/R not only in the intestine but also in the lung. These changes were diminished by mepacrine. In the cytochemical electron microscopy to detect hydrogen peroxide, intestinal I/R increased the generation of the hydrogen peroxide in the lung as well as in the intestine. Expression of interleukin-1 (IL-1) in the lung was investigated through RT-PCR. The expression of IL-1 after intestinal I/R was enhanced, and again, the inhibition of $PLA_2$ suppressed the expression of IL-1 in the lung. Taken together, intestinal I/R seems to induce acute lung leak through the activation of $PLA_2$, the increase of IL-1 expression associated with increased oxidative stress by neutrophilic respiratory burst.

  • PDF

Effect of Methylprednisolone Sodium Succinate on Innate Immune Function of Canine Peripheral Blood Phagocytes

  • Park, Moo-Rim;Kang, Ji-Houn;Yang, Mhan-Pyo
    • 한국임상수의학회지
    • /
    • 제25권6호
    • /
    • pp.440-446
    • /
    • 2008
  • Glucocorticoids (GCs) are the most widely used immunosuppressive agents, but animals treated with GCs may experience deleterious side effects which limit their use in many clinical conditions. In the present study, we examined whether methylprednisolone sodium succinate (MPSS), a glucocorticoid, modulates circulating leukocyte numbers, phagocytic capacity and oxidative burst activity (OBA) of canine peripheral blood phagocytes, and whether tumor necrosis factor-alpha (TNF-$\alpha$) release is affected by MPSS injection. Neutrophilia and monocytosis were induced by the administration of a high dose of MPSS, which is the recommended protocol for canine patients with acute spinal cord injury. The injection of MPSS decreased the phagocytic capacity of canine PMNs but not PBMCs, and recovered 12 hours (hr) after the completion of MPSS dosing. The OBA of both PMNs and PBMCs was suppressed by MPSS, and restored 24 hr after the completion of dosing. The lipopolysaccharide-induced TNF-α release by PBMCs but not PMNs exposed to MPSS was reduced 12 hr after the completion of dosing, and recovered 48 hr after the completion of dosing. These results suggest that the application of MPSS protocol inhibits the innate immune functions of canine peripheral blood phagocytes for short time relatively.

Fucoidan에 의한 개 말초혈액 단핵구세포에서 생산된 TNF-${\alpha}$의 다형핵백혈구에 대한 탐식능과 순간산소과소비력의 증가효과 (Fucoidan Increases Phagocytic Capacity and Oxidative Burst Activity of Canine Peripheral Blood Polymorphonuclear Cells Through TNF-${\alpha}$ from Peripheral Blood Mononulear Cells)

  • 김수현;강지훈;양만표
    • 한국임상수의학회지
    • /
    • 제28권2호
    • /
    • pp.183-189
    • /
    • 2011
  • 개 말초혈액 다형핵 백혈구(PMNs)의 탐식능력과 순간산소과소비력 (OBA) 에 대한 fucoidan의 효과를 검토하였다. Fucoidan 그 자체는 PMNs의 탐식능력과 OBA에 직접적인 효과를 보이지 않았다. 그러나 fucoidan으로 배양한 PBMCs의 배양상층액은 PMNs의 탐식능력과 OBA를 농도의존적으로 증가시켰다. 또한, TNF-${\alpha}$에 의한 PMNs의 탐식능력과 OBA의 측정 결과도 fucoidan으로 배양한 PBMCs 배양상층액의 그것과 유사하였다. 이러한 탐식능력과 OBA의 활성은 anti-TNF-${\alpha}$ pAb를 처리했을 때 억제되었다. PBMCs 배양 상층액 속의 TNF-${\alpha}$의 양을 정량한 결과 대조군에 비해 증가되었으며, PBMCs의 TNF-${\alpha}$ mRNA 발현 정도도 fucoidan을 첨가한 경우 증가되었다. 이상의 결과로부터, fucoidan은 개 말초혈액 PMNs의 탐식능력과 OBA에 대하여 면역자극 작용을 가지고 있으며, 이것은 fucoidan의 자극에 의해 PBMCs에서 생산되어 분비되는 가용성 물질인 TNF-${\alpha}$에 의해 나타나는 것으로 사료되었다.

폐렴경과 중 순환 호중구의 Respiratory Burst 활성도 변화 (Longitudinal flowcytometric measurement of respiratory burst activity of neutrophils in patients with pneumonia)

  • 이재명;이종민;김동규;최정은;모은경;박명재;이명구;현인규;정기석;박찬정
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권5호
    • /
    • pp.728-735
    • /
    • 1996
  • 연구배경: 말초혈액내 백혈구의 약 60%를 차지하는 호중구는 세균 및 진균 감염시 일차 방어기전으로 염증부위에 모여 세균 및 진균을 탐식하고 이때 활성화된 호중구는 산화율을 생성하고 이와 함께 탈과립된 효소 등에 의해서 살균작용이 이루어진다. Respiratory burst에 의하여 생성된 산화물은 감염에서의 살균 작용 외에, 염증반응의 중추 역할을 하는 물질로서 조직손상, 약물대사, 노화, 발암과정에 관여하여 각종 질환과의 연관성을 제시하고 있다. 본 연구는 폐렴환자에 있어서 폐렴의 경과 중에 중요한 역할을 하는 호중구로부터 산화물의 생성능력을 보기 위해 Respi ratory burst 활성도를 측정하였다. 방법: 건강인 24명과 폐렴으로 진단된 24명의 환자를 대상으로 혈액내 호중구의 respiratory burst 활성도를 입원 1일, 3일, 5일, 7일, 9일째에 자극하지 않은 상태 및 fMLP(formyl- MethionylLeucyl-Phenylalanine)와 PMA(phorbol myristate acerate)로 자극한 상태에서 DCF-DA를 이용한 유세포분석법으로 측정하였다. 결과: 정상인 호중구는 생리적 자극제인 fMLP에 대해 통계학적으로 의미는 없지만 약간 높은 활성도를 보였고 비생리적 자극제인 PMA에 대해서는 통계학적으로 의미있는 높은 활성도를 나타냈다. 그러나 폐렴환자의 호중구는 PMA에 자극은 되었으나 정상인 호중구보다 활성도가 덜 증가하였다(p<0.01). 호중구의 respiratory burst 활성도를 폐렴과 정상인에서 비교할 때, 자극 전에는 양군간에 차이가 없었고 fMLP로 자극한 경우에도 의미있는 차이는 없었다. 그러나 PMA로 자극한 경우 내원 1일부터 10일까지 폐렴환자는 정상인에 비해 자극에 대한 respiratory burst 활성도의 증가폭이 통계적으로 의미있게 폐렴 초기에 저하되었다가 치료가 진행됨에 따라 정상화되는 양상을 보였다. 결론: 폐렴으로 진단된 환자의 치료과정 중 혈중 호중구로부터의 과산화수소 생성능은 항생제 투여전에는 감소된 상태였으며 이후 치료 개시와 함께 점차 증가하여 9일째에는 정상인 수준으로 회복되었다.

  • PDF

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.