• Title/Summary/Keyword: Oxidative

Search Result 6,085, Processing Time 0.031 seconds

The Effects of Functional Tea (Mori Folium, Lycii Fructus, Chrysanthemi Flos, Zizyphi Fructus, Sesamum Semen, Raphani Semen) Supplement with Medical Nutrition Therapy on the Blood Lipid Levels and Antioxidant Status in Subjects with Hyperlipidemia (고지혈증 환자에서 의학영양치료와 병행하여 섭취한 기능성차(상엽, 구기자, 국화, 대추, 참깨, 나복자)의 혈중 지질 농도 저하 및 항산화 효과)

  • Lim, Hyun-Jung;Cho, Kum-Ho;Choue, Ryowon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.1
    • /
    • pp.42-56
    • /
    • 2005
  • Hyperlipidemia is one of the risk factors for coronary artery disease. Despite of epidemiological evidence that tea consumption is associated with the reduced risk of coronary heart disease, experimental studies designed to show that drinking tea affects blood lipid concentration or oxidative stress have been unsuccessful. The purpose of this study was to investigate whether functional tea (three servings/day) supplement with medical nutrition therapy (MNT) lead to a beneficial outcomes in mildly hyperlipidemic adults. From February to October, 2003, the 43 hyperlipidemic (23 men, 20 women) subjects (total cholesterol$\geq$200 mg/dL or triglyceride$\geq$150 mg/dL) admitted to K Medical Center were studied. Subjects were randomly divided into 3 groups; placebo tea (PT), half dose of functional tea (HFT), full dose of functional tea (FFT). During 12 weeks of study period, the subjects were given placebo or functional tea daily with MNT. Anthropometric measurements, blood chemical analysis including lipid levels, total superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and dietary assessment were carried out at the beginning and end of experiment. The effects of functional tea were compared with the placebo in randomized clinical trial study. The placebo was prepared to match with the functional tea in color and taste. After the 12 weeks of MNT, the subjects had regular and balanced meal pattern. Consumption of foods high in cholesterol and saturated fat, salty foods, fried foods, and instant foods decreased significantly in all three groups (p<0.05). Intake of energy and cholesterol also decreased (p<0.05). Drinking three servings per day (390 mL/day) of functional tea significantly reduced the levels of blood triglyceride (HFT, 42.5%; FFT, 29.4%), total cholesterol (HFT, 8.5%; FFT, 13.7%), and atherogenic index (HFT, 14.6%; FFT, 21.7%). Whereas no changes were found in the LDL-, HDL-cholesterollevels, and LDL/HDL ratio. Plasma homocysteine (Hcy) concentration decreased significantly (p<0.05) in functional tea groups (HFT, 14.9%; FFT, 14.1%). SOD increased significantly (p<0.05) in HFT (8.3%). GSH-Px increased significantly (p<0.05) in FFT (12.8%). In conclusion, the MNT improved the dietary habits, in addition, functional tea supplement decreased blood lipid levels and Hcy, and increased SOD and GSH-Px levels. These results indicate that functional tea consumption may decrease the risk of cardiovascular disease via improving blood lipid levels and antioxidant status.

Comparison of Dietary Carotenoids Metabolism and Effects to Improve the Body Color of Cultured Fresh-water Fishes and Marine Fishes (양식 담수어 및 해산어의 사료 Carotenoids 대사의 비교와 체색개선에 미치는 영향)

  • Ha, Bong-Seuk;Kweon, Moon-Jeong;Park, Mi-Yeon;Baek, Sung-Han;Kim, Soo-Young;Baek, In-Ok;Kang, Seok-Joong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.270-284
    • /
    • 1997
  • Effects of dietary carotenoids were investigated on the metaboβsm and body pigmentation of rainbow trout(Salmo gairdneri), masu salmon(Oncorhynchus macrostomos), eel(Anguilla japonica), rock fish(Sebastes inermis) and black rock fish(Sebastes schlegeli). Three weeks later after depletion, these fishes were fed diet supplemented with ${\beta}-carotene$, lutein, canthaxanthin', astaxanthin or ${\beta}-apo-8'-carotenal$ for 4 to 5 weeks, respectively. Carotenoids distributed to and changed in integument were analyzed. In the integument of rainbow trout. zeaxanthin, ${\beta}-carotene$ and canthaxanthin were found to be the major carotenoids, while lutein, isocryptoxanthin and salmoxanthin were the minor carotenoids. In the integument of masu salmon, zeaxanthin was found to be the major carotenoids, while triol, lutein, tunaxanthin, ${\beta}-carotene$, ${\beta}-cryptoxanthin$ and canthaxanthin were the minor carotenoids. In the integument of eel, ${\beta}-carotene$ was found to be the major carotenoids, while lutein, zeaxanthin and ${\beta}-cryptoxanthin$ were the minor carotenoids. In the integument of rock fish, zeaxanthin, ${\beta}-carotene$, tunaxanthin$(A{\sim}C)$ and lutein were found to be the major carotenoids, while ${\beta}-cryptoxanthin$, ${\alpha}-cryptoxanthin$ and astaxanthin were the minor carotenoids. Likely in the integument of black rock fish, ${\beta}-carotene$, astaxanthin and zeaxanthin were found to be the major carotenoids, whereas ${\alpha}-cryptoxanthin$, ${\beta}-cryptoxanthin$, lutein and canthaxanthin were the minor contributor. The efficacy of body pigmentation by the accumulation of carotenoids in the integument of rainbow trout and masu salmon were the most effectively shown in the canthaxanthin group and of eel, rock fish and black rock fish were the most effectively shown in the lutein group. Based on these results in the integument of each fish, dietary carotenoids were presumably biotransformed via oxidative and reductive pathways. In the rainbow trout, ${\beta}-carotene$ was oxidized to astaxanthin via successively isocryptoxanthin, echinenone and canthaxanthin. Lutein was oxidized to canthaxanthin. Canthaxanthin was reduced to ${\beta}-carotene$ via isozeaxanthin, and astaxanthin was reduced to zeaxanthin via triol. In the masu salmon, ${\beta}-carotene$ was oxidized to zeaxanthin. Lutein was reduced to zeaxanthin via tunaxanthin. Canthaxanthin was reduced to zeaxanthin via ${\beta}-carotene$. and astaxanthin was reduced to zeaxanthin via triol. In the eel, ${\beta}-carotene$ and lutein were directly deposited but canthaxanthin was reduced to ${\beta}-carotene$, and cholesterol lowering effect by Meju supplementation might be resulted from the modulation of fecal axanthin, astaxanthin and ${\beta}-apo-8'-carotenal$ were oxidized and reduced to tunaxanthin via zeaxanthin. In the black roch fish, ${\beta}-carotene$ was oxidized to ${\beta}-cryptoxanthin$. Lutein was reduced to ${\beta}-carotene$ via ${\alpha}-cryptoxanthin$. Canthaxanthin was reduced to ${\alpha}-cryptoxanthin$ via successively ${\beta}-cryptoxanthin$ and zeaxanthin. Astaxanthin converted to tunaxanthin via isocryptoxanthin and zeaxanthin, and ${\beta}-apo-8'-carotenal$ was reduced to ${\alpha}-cryptoxanthin$ via ${\beta}-cryptoxanthin$ and zeaxanthin.

  • PDF

Effects of Ojeoksangamibang on the Lipid Metabolism, Anti-oxidation and Concentration of Proinflammatory Cytokines in Rat Fed High Fat Diet (오적산가미방(五積散加味方)이 고지방식이 유도 비만쥐의 지질대사, 항산화계 및 전염증성 cytokine 생산에 미치는 영향)

  • Kong, In-Pyo;Park, Won-Hyung;Cha, Yun-Yeop
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.4
    • /
    • pp.23-40
    • /
    • 2011
  • Objectives: This study was designed to examine the effects of extracts of Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) on the lipid lowering, anti-oxidation and concentration of proinflammatory cytokines and was investigated on hyperlipidemic rats. Methods: Male rats weighing $182.39{\pm}4.71g$ were fed high fat diet for 8 weeks and 36 rats(above 400 g) were divided into 4 groups. Each of 9 rats was divided a control group and experimental groups. We fed a control group of rats a basal diet and administered normal saline(100 mg/kg, 1 time/1 day) for 4 weeks. And we fed each experimental group of rats basal diet and administered an extract of Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) extracts(100 mg/kg, 200mg/kg, 300 mg/kg, 300 mg/kg, 1 time/1 day) for 4 weeks. At the end of the experiment, the rats were sacrificed to determine their chemical composition. We measured lipid of plasma and liver, concentration of proinflmmatory cytokines, anti-oxidative activity and $TNF-{\alpha}$, Apo-B, Apo-E and leptin gene expression. Results: 1. Concentration of plasma free fatty(FFA) showed no significant difference in all the treatment groups. Concentration of plasma triglyceride(TG) showed a significant decrement in the 300 mg/kg in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups than that of control group. 2. Concentration of plasma total cholesterol showed a significant decrement in the 200 and 300 mg/kg in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups than that of control group. Concentration of plasma low density lipoprotein(LDL)-cholesterol showed a Significant decrement in the 300 mg/kg in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups than that of control group. Concentration of plasma high density lipoprotein(HDL)-cholesterol showed a significant increment in the 300 mg/kg in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) group. 3. Concentration of liver total cholesterol showed a tendence to decrease in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups. Concentration of liver TG showed a significant decrement in all Ojeoksangamibang groups than that of control group. 4. Concentration of plasma and liver thiobarbituric acid reactive substance(TBARS) showed a tendence to decrease in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups. 5. The values of glutathione peroxidase(GSH-Px), superoxide dismutase(SOD) and catalase(CAT) activity showed a significant increment in all Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups than that of control group. 6. The values of plasma aspartate aminotransferase(AST) and alanine aminotransferase(ALT) activity showed no significant different in all treatment group. 7. Concentration of plasma $interleukin(IL)-1{beta}$ showed no significant difference in all the treatment groups. Concentration of plasma IL-6 showed a significant decrement in the 300 mg/kg in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) group than that of control group. Concentration of plasma tumor necrosis $factor-{\alpha}(TNF-{\alpha})$ a siginifant decrement in the 200 and 300 mg/kg in Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) group than that of control group. However the concentration of plasma IL-10 in the 300 mg/kg Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups showed a significant increment than that of control group. 9. In the analysis of reverse transcription-polymerase chain reaction(RT-PCR), gene expression of $TNF-{\alpha}$, Apo-B and Apo-E in the Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups showed a lower expression than that of control group. However the gene expression of leptin showed no difference in the treatment groups. 10. The ratio of $TNF-{\alpha}$, Apo-B, and Apo-E per ${\beta}-actin$ expression in the Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) groups showed a significant decrement than that of control group. However The ratio of leptin expression per ${\beta}-actin$ expression showed no significant difference among all the treatment groups. Conclusions: According to above results, in lowering lipid effect, anti-oxidation and control of pro-inflammatory cytokines production, Ojeoksangamibang($W{\check{u}}j\bar{i}s\check{a}nji\bar{a}w\grave{e}if\bar{a}ng$) gives effect.

Antimicrobial, Antioxidant and Cellular Protective Effects against Oxidative Stress of Anemarrhena asphodeloides Bunge Extract and Fraction (지모 뿌리 추출물과 분획물의 항균활성과 항산화 활성 및 세포보호 연구)

  • Lee, Yun Ju;Song, Ba Reum;Lee, Sang Lae;Shin, Hyuk Soo;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.360-371
    • /
    • 2018
  • Extracts and fractions of Anemarrhena asphodeloides Bunge were prepared and their physiological activities and components were analyzed. Antimicrobial activities of the ethyl acetate and aglycone fractions were $78{\mu}g/ml$ and $31{\mu}g/ml$, respectively, for Staphylococcus aureus and $156{\mu}g/ml$ and $125{\mu}g/ml$, respectively, for Pseudomonas aeruginosa. 1,1-Diphenyl-2-picrylhydrazyl free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction, and aglycone fraction of A. asphodeloides extracts were $146.2{\mu}g/ml$, $23.19{\mu}g/ml$, and $71.06{\mu}g/ml$, respectively. The total antioxidant capacity ($OSC_{50}$) in an $Fe^{3+}$-EDTA/hydrogen peroxide ($H_2O_2$) system were $17.5{\mu}g/ml$, $1.5{\mu}g/ml$, and $1.4{\mu}g/ml$, respectively. The cytoprotective effect (${\tau}_{50}$) in $^1O_2$-induced erythrocyte hemolysis was 181 min with $4{\mu}g/ml$ of the aglycone fraction. The ${\tau}_{50}$ of the aglycone fraction was approximately 4-times higher than that of (+)-${\alpha}$-tocopherol (${\tau}_{50}$, 41 min). Analysis of $H_2O_2$-induced damage of HaCaT cells revealed that the maximum cell viabilities for the 50% ethanol extract, ethyl acetate fraction, and aglycone fraction were 86.23%, 86.59%, and 89.70%, respectively. The aglycone fraction increased cell viability up to 11.53% at $1{\mu}g/ml$ compared to the positive control treated with $H_2O_2$. Analysis of ultraviolet B radiation-induced HaCaT cell damage revealed up to 41.77% decreased intracellular reactive oxygen species in the $2{\mu}g/ml$ aglycone fraction compared with the positive control treated with ultraviolet B radiation. The findings suggest that the extracts and fractions of A. asphodeloides Bunge have potential applications in the field of cosmetics as natural preservatives and antioxidants.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF