• Title/Summary/Keyword: Oxidation nitrocarburising

Search Result 7, Processing Time 0.025 seconds

Comparision of Wear Characteristics of Automobile Transmission Gear on Surface Modification (표면개질을 달리한 자동차 변속기어의 마멸특성 비교)

  • Ryu Ul-Hyun;Cho Yon-Sang;Kim Young-Hee;Park Heung-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.299-306
    • /
    • 2003
  • The SCM420 used mainly to automobile transmission gear has problems that it costs transmission gear maker much money in carburizing treatment. For this, it needs to alternate the existing material and heat treatment to new gear material and surface modification. For this, friction and wear experiment according to sliding speed and applied load was carried out to evaluate the wear resistance of two transmission gear materials with oxidation nitrocarburising and non-oxidation nitrocarburising NT100, The presumed wear volume was calculated with the image processing for evaluation of wear resistance of two transmission gear materials. The results show that the oxidation nitrocarburising has a distinguished wear resistance than non-oxidation nitrocarburising.

  • PDF

The Characteristics of Corrosion Resistance during Plasma Oxinitrocarburising for Carbon Steel (플라즈마 산질화처리 조건이 강의 내식성에 미치는 영향)

  • Lee, K.H.;Nam, K.S.;Lee, S.R.;Cho, H.S.;Shin, P.W.;Park, Y.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.2
    • /
    • pp.103-109
    • /
    • 2001
  • Plasma nitrocarburising and post oxidation were performed on SM45C steel using a plasma nitriding unit. Nitrocarburising was carried out with various methane gas compositions with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% oxygen gas atmosphere with 4 torr at different temperatures for various times. It was found that the compound layer produced by plasma nitrocarburising consisted of predominantly ${\varepsilon}-Fe_{2-3}(N,C)$ and a small proportion of ${\gamma}-Fe_4(N,C)$. With increasing methane content in the gas mixture, ${\varepsilon}$ phase compound layer was favoured. In addition, when the methane content was further increased, cementite was observed in the compound layer. The very thin oxide layer on top of the compound layer was obtained by post oxidation. The formation of Oxide phase was initially started from the magnetite($Fe_3O_4$) and with increasing oxidation time, the oxide phase was increased. With increasing oxidation temperature, oxide phase was increased. However the oxide layer was split from the compound layer at high temperature. Corrosion resistance was slightly influenced by oxidation times and temperatures.

  • PDF

A Study on Wear Characteristics of Machine Structural Steel by Surface Modification (표면개질에 의한 기계구조용강의 마멸특성에 관한 연구)

  • Park Heung-Sik;Woo Kyu-Sung
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.73-78
    • /
    • 2006
  • The surface modification of automobile parts is of great technological importance for the improvement of corrosion resistance, wear resistance, fatigue strength and so on. Recently, research on the development of the technology of surface modification substituting 6-balance chrome process has progressively been achieved in automobile parts. Although the innovation technology for the improvement of the corrosion-resisting and wear resistant properties through post oxidation after nitrocarburising process had attracted a great attention. For this, anodically potentiodynamic polarisation testing was carried out to corrosion resistance and friction and wear experiment according to applied load and sliding distance was carried out to evaluate the wear resistance of machine structural steel with nitrocarburising and non-nitrocarburising SM45C. The presumed wear volume was calculated with the image processing far evaluation of wear resistance of two materials. The results show that the nitrocarburising had a distinguished corrosion resistance and wear resistance than non-nitrocarburising.

The Effect of Post Oxidation on Corrosion Characteristics of Gas Nitrocarburised Carbon Steels (Nitrocarburising 처리된 탄소강의 내식특성에 미치는 Post Oxidation 효과)

  • Kim, Y.H.;Jung, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • The effect of post oxidation, water-quenched after holding in air for 5~420 seconds or cooling or furnace cooling, on corrosion resistance and phase formation characteristics of the surface layer of SM20C and SM45C carbon steels after gas nirtrocarbursing in the $NH_3-5%CO_2-N_2$ gas atmosphere at $580^{\circ}C$ for 3hours is studied. The compound layers of two steels consist of ${\varepsilon}-Fe_{2-3}N$, ${\gamma}^{\prime}-Fe_4N$ and $Fe_3O_4$, phases, however, the quantity of ${\gamma}^{\prime}-Fe_4N$ phase increases for the furnace cooled specimen compared to that of air cooling specimen. With increasing $NH_3$ content in the gas mixture and also increasing the keeping time in the air after gas nitrocarburising, the ${\varepsilon}-Fe_{2-3}N$ phase of compound layer increases, while the decreased current density recognizing the improvement of corrosion resistance are shown. the passive current density of SM45C steel is lower than that of SM20C steel at the same nitrocarburising conditions.

  • PDF

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

The Characteristics of the Oxide Layer Produced on the Plasma Nitrocarburized Compound Layer of SCM435 Steel by Plasma Oxidation (플라즈마 산질화처리된 SCM435강의 표면경화층의 미세조직과 특성)

  • Jeon Eun-Kab;Park Ik-Min;Lee Insup
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.265-269
    • /
    • 2004
  • Plasma nitrocarburising and post oxidation were performed on SCM435 steel by a pulsed plasma ion nitriding system. Plasma oxidation resulted in the formation of a very thin ferritic oxide layer 1-2 $\mu\textrm{m}$ thick on top of a 15~25 $\mu\textrm{m}$ $\varepsilon$-F $e_{2-3}$(N,C) nitrocarburized compound layer. The growth rate of oxide layer increased with the treatment temperature and time. However, the oxide layer was easily spalled from the compound layer either for both oxidation temperatures above $450^{\circ}C$, or for oxidation time more than 2 hrs at oxidation temperature $400^{\circ}C$. It was confirmed that the relative amount of $Fe_2$$O_3$, compared with $e_3$$O_4$, increased rapidly with the oxidation temperature. The amounts of ${\gamma}$'-$Fe_4$(N,C) and $\theta$-$Fe_3$C, generated from dissociation from $\varepsilon$-$Fe_{2-3}$ /(N,C) phase during $O_2$ plasma sputtering, were also increased with the oxidation temperature.e.

Duplex Surface Treatments of Plasma Nitrocarburizing and Plasma Oxidation of SKD 11 Steel

  • Lee, In-Sup;Jeong, Kwang-Ho;Cho, Young-Rae
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.250-253
    • /
    • 2007
  • Plasma nitrocarburizing and plasma oxidizing treatments were performed to improve the wear and corrosion resistance of SKD 11 steel. Plasma nitrocarburizing was conducted for 12 h at $520^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the $\varepsilon-Fe_{2-3}(N,C)$ phase. It was found that the compound layer produced by plasma nitrocarburising was predominantly composed of $\varepsilon-phase$, with a small proportion of $\gamma'-Fe_4(N,C)$ phase. The thickness of the compound layer was about $5{\mu}m$ and the diffusion layer was about $150{\mu}m$ in thickness, respectively. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the compound layer was obtained by plasma post oxidation. It was confirmed that the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer.