• Title/Summary/Keyword: Oxidation Reduction Potential (ORP)

Search Result 93, Processing Time 0.027 seconds

The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis (유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가)

  • Cho, Chang-Hwan;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.

Characterization of Heavy Metals Bioleaching from Fly Ash by a Sulfur-Oxidizing Bacterium Thiobacillus thiooxidans: Effect of Solid Concentrations (황산화세균 Thiobacillus thiooxidans에 의한 fly ash의 중금속 제거 특성:고형물 농도의 영향)

  • 조경숙;문희선;이인숙
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • The bioleaching of heavy metals from fly ash was performed by Thiobacillus thiooxidans MET isolated from the enrichment culture of an anaerobically digested sludge. The effect of solid concentrations on the efficiency of metal leaching was studied in shaken flasks. In the range of solid concentrations 20 g.L­$^1$to 100 g.L­$^1$T. thiooxidans MET oxidized S$^{0}$ to sulfate without any lag period. The final pH of slurry solution was decreased to below pH 1, and the final oxide-redox potential (ORP) was increased to over 420 mV in the solid concentrations below 100 g.L­$^1$. However, the initial lag period of 4 to 8 days was required to obtain the pH reduction and ORP increase of the slurry solutions in the range of solid concentrations 150 g.L­$^1$to 300 g.L­$^1$. The sulfur oxidation rate of T. thiooxidans MET in 20~100 g.L­$^1$solid concentrations was 0.70~0.75 g-S.L­$^1$ㆍ d­$^1$, but its sulfur oxidation activity was remarkably inhibited with increasing solid concentration over 150 g.L­$^1$. Increasing fly ash solids concentration in the range of solids concentration 20 g.L­$^1$ to 200 g.L­$^1$decreased the removal efficiency of Zn, Cu, Mn, Cr and Pb. The solubilization of heavy metals from fly ash was strongly correlated with the pH value of slurry solution. When the pH of slurry solution was reduced to 3, the solubilization process of Zn, Cu and Mn started, and their solubilization efficiency of Zn, Cu and Mn was progressively increased below pH 2. However, the solubilization process of Cr and Pb started at pH 2.5 and 2.0, respectively.

  • PDF

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.

The Characteristics os Water Quality of Tap water and Far-infrared rays mineral water (수돗물과 원적외선 기능수의 수질 특성의 비교)

  • 백우현
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.423-428
    • /
    • 2000
  • The characteristics of Far-infrared rays mineral water(FIR water) have been compared to the tap water by means of relationship between FIR water and Nuclear Magnetic Resonance spectroscopy(NMR), FIR water and thermography FIR water and velocity of blood FIR-water and pH, FIR water and dissolved oxygen(DO), FIR water and Oxidation-Reduction Potential(ORP) using the development FIR water purification of grand prix system. From the experimental result are quite satisfactory when compared with the tap water. Also the FIR water were evaluated to see if those are tasty and healthy using the Hashimoto's Mineral Balance Index. As a result FIR-water was found as tasty and healthy.

  • PDF

Design of Monitoring System for Integrated Management of On-site Wastewater Treatment Plants and Development of its Operation Program (소규모 현장 오수처리시설의 통합관리를 위한 모니터링 시스템 설계 및 운영 프로그램 개발)

  • Cho, Young-Hyun;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.137-140
    • /
    • 2002
  • The monitoring system for integrated management of on-site wastewater treatment plants(biofilter) was designed and its operation program was developed. In design process, the research on monitoring parameters which will be able to represent condition and operation of the pilot plants was accomplished, and these parameters came to reveal with ORP(Oxidation-Reduction Potential), water level, pump and power on/off. Proposed monitoring system is composed with measurement, control, communication and display device, and PCB(Prototype Circuit Boards) and microcontroller (PIC16F877) technique are applied to its design of control device for performing specific function. also, The operation program of PC setup is developed in order to provide a convenience to the manager.

  • PDF

Real-time Chemical Monitoring System using RGB Sensor toward PCB Manufacturing (PCB 제조공정을 위한 화학약품 용액의 실시간 모니터링 시스템)

  • An, Jong-Hwan;Lee, Seok-Jun;Kim, Lee-Chui;Hong, Sang-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.397-401
    • /
    • 2008
  • Most of the topic in PCB industry was about increasing the volume of product for the development of electronics in numerous industrial application area. However, it has been emerged that yield improvement quality manufacturing via detecting any suspicious process in order to minimize the scrapped product and material waste. In addition, recently, restriction of hazardous substances (RoHS) claims that electronic manufacturing environment should reduce the harmful chemicals usage, thus the importance of monitoring copper etchant and detecting any mis-processing is crucial for electronics manufacturing. In this paper, we have developed real-time chemical monitoring system using RGB sensor, which is simpler but more accurate method than commercially utilized oxidation reduction potential (ORP) technique. The developed Cu etchant monitoring system can further be utilized for copper interconnect process in future nano-semiconductor process.

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

Changes in Benthic Environments in Polluted Coastal Sediment Using Granulated Coal Ash as a Cover (석탄회 조립물의 피복에 따른 연안 오염퇴적물의 저서환경 변화)

  • Jeong, Ilwon;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.67-73
    • /
    • 2019
  • We carried out basic research to evaluate covering material for improving and managing contaminated benthic environments in coastal areas. Changes in nutrient concentration such as phosphate, hydrogen sulfide of contaminated sediment, and pH, Oxidation Reduction Potential (ORP) were investigated through mesocosm experiments for 6 months by covering contaminated sediment with granulated coal ash. Calcium oxide eluted from the granulated coal ash was confirmed to neutralize acidified sediment by increasing pH through hydrolysis. Also, calcium oxide and silica eluted from the granulated coal ash adsorbed and precipitated with phosphate in the sediment. The concentration of phosphate in the sediment investigated decreased by ca. 84.31 %. Similarly, the concentration of hydrogen sulfide decreased by 133.5 mg/L in one month. The hydrogen sulfide is considered to have reacted with substances such as manganese oxide which were eluted from the granulated coal ash and precipitated. Also, it was concluded that the hydrogen sulfide was reduced since anaerobic conditions in the sediment weakened. According to the results of these mesocosm experiments, granulated coal ash was found to be effective to remediate and manage benthic environments by covering the surface layer of sediment.

Pollutant Monitoring of Abandoned Mines using the Leaching Test with Soils and Tailings (토양 및 광미의 용출실험을 이용한 폐광산오염수준의 모니터링)

  • Kang, Mee-A;Kim, Kwang-Tae
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.419-424
    • /
    • 2007
  • The contents were investigated by the monitoring survey from the soils and tailings caused by numerous abandoned mines in Korea. Cause heavy metals due to abandoned metal mines are raising significant environmental problems. But it is an important key such as a leaching and a transfer mechanism to evaluate contamination levels caused by abandoned mines. In this study the column test was carried in order to calculate a leaching level from soils and tailings. It was demonstrated that the leaching of Pb, Cd and Mn was expressed with similar behaviors and that of As and Cu was expressed with similar behaviors. For Zn, the leaching behavior was shown a serious leaching level with 40 mg/kg during the 45days. This was explained by Zn high contents of soils Zn in a natural world and ORP conditions where the leaching of Zn was occurred easily. Hence it was necessary that the survey of ORP was a key as well as total contents for the management of abandoned metal mines. We could estimate the chemical forms of heavy metals using the physical index such as ORP and pH and reduce the risk from heavy metals caused by abandoned metal mines.

Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies (Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험)

  • Lee, Chung-Seop;Oh, Da-Som;Cho, Sung-Heui;Lee, Jin-Wook;Chang, Yoon-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.