• Title/Summary/Keyword: Oxidation Rate Constant

Search Result 171, Processing Time 0.033 seconds

Surface Texture Changes due to the Oxidation of Pyrite by Acidithiobacillus Ferrooxidans (애시디싸이오바실러스 페로악시댄스에 의한 황철석 산화에 따른 표면 조직의 변화)

  • Yu, Jae-Young;Koh, Hyun-Jin;Song, Hong-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.235-244
    • /
    • 2011
  • A batch experiment of pyrite oxidation was performed and the surfaces of the reacted pyrite were regularly observed with the scanning electron microscope (SEM) together with the chemical compositions of the solution to help understand the oxidation mechanisms of pyrite by Acidithiobacillus ferrooxidans (Af). The dissolved Fe concentrations clearly indicated that Af experiences the lag and then exponential growth phase. An Af cell was observed to be attached to the surface of pyrite during the lag, implying that a direct leaching by the microbe really happens for the period. It is not certain, however, whether the main mechanism of pyrite oxidation during that time was the direct leaching or not, because there were just a few cells confirmed to be attached and most of the dissolved Fe was Fe(III). The dissolved Fe concentration stayed almost constant from the mid-lag phase to just before the onset of the exponential phase, suggesting that AI needs an adaptation time to switch its oxidation mechanism from one to the other whichever it is during that stage of growth. The moment of Af's cell division was observed by SEM on the surface of pyrite during the lag phase. The corrosion outline around the dividing cell was quite similar to the shape of the cell itself, which implies that the rate of the microbial oxidation is very uneven and the rate when the cell metabolizes should be much faster than that calculated from the concentration variation of the dissolved Fe. The number of etch holes by Af is much higher on the inoculated surfaces, indicating the average rate of pyrite oxidation is also much faster than that of abiotic oxidation. The microbial etch holes on pyrite surface are small and deep, which may influence the transition of the growth phases of Af from lag to exponential.

Study on the Correlation between Thermal Characteristics and Heat Accumulation in the Coal Pile (석탄의 열적 특성과 석탄 내부의 승온 특성과의 상관관계 연구)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 2010
  • Spontaneous ignition tests of five different coals with non-iso-thermal and iso-thermal test method based on the standard test procedure of NF T20-036 were carried. These five coals included the 2 low rank coals and 3 bituminous coals. Test results showed that the ignition temperatures of all coals at the iso-thermal conditions were higher than that of non-isothermal condition, and those of low rank SM and BR coal in both nonisothermal and isothermal conditions were lower than bituminous AN and CN coals. The chemical species of coals such as oxygen and hematite also plays an important role in enhancing the ignition rate that the ignition temperature of SM coal was lowered. The heat accumulation tendency of five coals inside outdoor stack pile was monitored with emphasis on the change in the temperature of the coal depth in stack pile. In case of low rank BR coal, its temperature inside coal stack pile due to the rate of high heat accumulation and oxidation was $59^{\circ}C$ compared to $51^{\circ}C$ for other SW bituminous coal. And the heat accumulation rate inside coal stack piles was increased with increased the Cp value which it was defined as the specific heat of coal at constant pressure, whereas other factors such as thermal diffusivity and conductivity of coal relatively had less effect on heat accumulation.

Kinetics of $CO_2$ decomposition over CuO-Magnetite and ZnO-Magnetite catalysts (CuO-Magnetite 및 ZnO-Magnetite 촉매상에서 $CO_2$ 분해반응속도론)

  • Yang, Chun-Mo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.79-85
    • /
    • 1998
  • $Cu_xFe_{3-x}O_4$ catalyst and $Zn_xFe_{3-x}O_4$ catalyst were synthesized by the air oxidation method with various C(II) and Zn(II) weights. Activated catalysts decomposed carbon dioxide to carbon at $350^{\circ}C$, $380^{\circ}C$, $410^{\circ}C$ and $440^{\circ}C$. The value of carbon dioxide decomposition rate for $Cu_{0.003}Fe_{2.997}O_4$ and $Zn_{0.003}Fe_{2.997}O_4$ catslysts than was better catalysts. The decomposed rate of the catalysts is about 85%${\sim}$90%. The reaction rate constant(4.00 $psi^{1-{\alpha}}/min$) and activation energy(2.62 kcal/mole) of $Cu_{0.003}Fe_{2.997}O_4$ catalyst are better than $Zn_{0.003}Fe_{2.997}O_4$

Comparison of the Kinetic Behaviors of Fe2O3 Spherical Submicron Clusters and Fe2O3 Fine Powder Catalysts for CO Oxidation

  • Yoo, Seung-Gyun;Kim, Jin-Hoon;Kim, Un-Ho;Jung, Jin-Seung;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1379-1384
    • /
    • 2014
  • ${\alpha}-Fe_2O_3$ spherical particles having an average diameter of ca. 420 nm and ${\alpha}-Fe_2O_3$ fine particles (< 10 ${\mu}m$ particle size) were prepared to examine as catalysts for CO oxidation. Kinetic studies on the catalytic reactions were performed in a flow reactor using an on-line gas chromatography system operated at 1 atm. The apparent activation energies and the partial orders with respect to CO and $O_2$ were determined from the rates of CO disappearance in the reaction stage showing a constant catalytic activity. In the temperature range of $150-275^{\circ}C$, the apparent activation energies were calculated to be 13.7 kcal/mol on the ${\alpha}-Fe_2O_3$ spherical submicron clusters and 15.0 kcal/mol on the ${\alpha}-Fe_2O_3$ fine powder. The Pco and $Po_2$ dependencies of rate were investigated at various partial pressures of CO and $O_2$ at $250^{\circ}C$. Zero-order kinetics were observed for $O_2$ on both the catalysts, but the reaction order for CO was observed as first-order on the ${\alpha}-Fe_2O_3$ fine powder and 0.75-order on the ${\alpha}-Fe_2O_3$ spherical submicron clusters. The catalytic processes including the inhibition process by $CO_2$ on the ${\alpha}-Fe_2O_3$ spherical submicron powder are discussed according to the kinetic results. The catalysts were characterized using XRD (X-ray powder diffraction), FE-SEM (field emission-scanning electron microscopy), HR-TEM (high resolution-transmission electron microscopy), and $N_2$ sorption measurements.

산소 첨가된 Cobalt(Ⅲ) 착물에 의한 2,6-di-tert-butylphenol의 산화반응

  • O, Jeong Geun;Im, Chae Pyeong;Choe, Yong Guk
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • The oxidation reaction between 2,6-di-tert-butylphenol (DTBP) and oxygen adducted Co(III) complexes as a catalysis has been studied by UV-visible spectrophtometry. According to the results, main product is 2,6-di-tert-butylbenzoquinone(BQ) and the activity of the complexes is bigger in [Co(III)2(SMPD)2(Py)2]2O2 than in [Co(III)2(SPPD)2(Py)2]2O2. The rate constant is 4.55~2.12${\times}$10$-3}$s. It was found that the oxidation reaction is primary reac-tion or concentration of catalysis, O2 molecule and substance. The reasult is far from Arrhenius properties because acti-vationenergy is 10.38 kJ/mol.

Photocatalytic Oxidation of 2-Mercaptoethanol to Disulfide using Sb(V)-, P(V)-, and Ge(IV)-porphyrin Complexes

  • Shiragami, Tsutomu;Onitsuka, Dai;Matsumoto, Jin;Yasuda, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.70-72
    • /
    • 2014
  • Visible-light irradiation of MeCN solution containing di(hydroxo)metallo(tetraphenyl)porphyrin complex $(tppM(OH)_2$: 1a; $M=Sb(V)^+Br^-$, 1b; $M=P(V)^+Cl^-$, 1c; M=Ge(IV)) and 2-mercaptoethanol (2-ME) as a substrate under aerated condition gave bis(2-hydroxyethyl)disulfide (2-HEDS) as an oxidative product of 2-ME. It is indicated that the oxidation of 2-ME should proceed with a photocatalytic process by 1, because the turn over number (TON) for the formation of 2-HEDS was over unit. The TON was determined to be 642 as a maximum value when 1a was used as a sensitizer. The formation of 2-HDES was extremely slow under argon atmosphere. The fluorescence of 1 was not quenched by 2-ME at all, and the free energy change (${\Delta}G$) with electron transfer (ET) from 2-ME to excited triplet state of $1(^31^*)$ was estimated as a negative value. The quenching rate constant ($k_r$) of $^31^*$ by 2-ME, obtained by the kinetics for the formation of 2-HEDS, strongly depends on ${\Delta}G$. These findings indicate that 1-sensitized oxidation was initiated by photoinduced ET from 2-ME to $^31^*$ to generate both radical cation of 2-ME ($2-ME^{+\bulle}$) and porphyrin radical anion ($1^{-\bulle}$), resulting that the formation of 2-HEDS can be proceeded by the dimerization of $2-ME^{+\bulle}$, and through a catalytic cycle due to returning to 1 by the ET from $1^{-\bulle}$ to molecular oxygen.

Process Parameter Selection for Plasma Electrolytic Oxidation to Improve Heat Dissipation Performance of Aluminum Alloy Heat Sink for Shipboard LED Luminaries (선박용 LED 등기구의 알루미늄 합금 방열판의 방열성능 향상을 위한 플라즈마 전해 산화의 공정변수 선정에 관한 연구)

  • Lee, Jung-Hyung;Jeong, In-Kyo;Han, Min-Su
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.6
    • /
    • pp.415-420
    • /
    • 2018
  • The possibility of an improvement in heat dissipation performance of aluminum alloy heat sink for shipboard LED luminaries through plasma electrolytic oxidation (PEO) was investigated. Four different PEO coatings were produced on aluminum alloy 5052 in silicate based alkaline solution by varying current density ($50{\sim}200mA/cm^2$). On voltage-time response curves, three stages were clearly distinguished at all current densities, namely an initial linear increase, slowdown of increase rate, and steady state(constant voltage). It was found that the increase in current density caused the breakdown voltage to increase. Two different surface morphologies - coralline porous structure and pancake structure - were confirmed by SEM examination. The coralline porous structure was predominant in the coatings produced at lower current densities (50 and $100mA/cm^2$) while under high current densities(150 and $200mA/cm^2$) the pancake structure became dominant. The coating thickness was measured and found to be in a range between about $13{\mu}m$ and $44{\mu}m$, showing increasing thickness with increasing current density. As a result, $100mA/cm^2$ was proposed as an effective process parameter to improve the heat dissipation performance of aluminum alloy heat sink, which could lower the LED operating temperature by about 30%.

Removal of Nitrate by modified Nanoscale Zero-Valent Iron (개질된 Nanoscale Zero-Valent Iron을 이용한 질산성질소 처리)

  • Kim, Hong-Seok;Ahn, Jun-Young;Hwang, Kyung-Yup;Park, Joo-Yang;Hwang, Inseong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.471-479
    • /
    • 2009
  • A Nanoscale Zero-Valent Iron(NZVI) was modified to build a reactor system to treat nitrate. Shell layer of the NZVI was modified by slow exposure of the iron surface to air flow, which produced NZVI particles that are resistant to aerial oxidation. A XANES (X-ray Absorption Near-Edge Structure) analysis revealed that the shell consists of magnetite ($Fe_3O_4$) dominantly. The shell-modified NZVI(0.5 g NZVI/ 120 mL) was able to degrade more than 95% of 30 mg/L of nitrate within $30 hr^{-1}$ ( pseudo first-order rate constant($k_{SA}$) normalzed to NZVI surface area ($17.96m^2/g$) : $0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$). Ammonia occupied about 90% of degradation products of nitrate. Nitrate degradation efficiencies increased with the increase of NZVI dose generally. Initial pH values of the reactor systems at 4, 7, and 10 did not affect nitrate removal rate and final pH values of all experiments were near 12. Nitrate removal experiments by using the shell-modified NZVI immobilized on a cellulose acetate (CA) membrane were also conducted. The nitrate removal efficiency of the CA membrane supported NZVI ($k_{SA}=0.0036L{\cdot}m^{-2}{\cdot}hr^{-1}$) was less than that of the NZVI slurries($k_{SA}=0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$), which is probably due to less surface area available for reduction and to kinetic retardation by nitrate transport through the CA membrane. The detachment of the NZVI from the CA membrane was minimal and impregnation of up to 1 g of NZVI onto 1 g of the CA membrane was found feasible.

A Study on the Comparison of Advanced Oxidation Reactions Including UV, $Fe^{2+}$, and $H_2O_2$ for the Degradation of Pentachlorophenol (UV와 $Fe^{2+}$, 그리고 $H_2O_2$를 조합한 고급산화 공정에서의 Pentachlorophenol의 분해 속도 연구)

  • Son, Hyun-Seok;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.846-851
    • /
    • 2007
  • This study was performed to compare and to examine the degradation efficiencies and degradation mechanism of pentachlorophenol(PCP) by UV, $UV/H_2O_2$, $Fe^{2+}$, $Fe^{2+}/H_2O_2$, and $UV/Fe^{2+}/H_2O_2$ processes. The pseudo-first order rate constant was compared in each process. The addition of $H_2O_2$ increased the rate constant by 13 times compared to the reaction with UV alone. The reaction rate in $Fe^{2+}$ reaction with PCP increased 4 times and 7.25 times by adding 180 mM $H_2O_2$ and 16 mM $H_2O_2$, respectively. Compared to that with $Fe^{2+}/H_2O_2$, the rate constant of the reaction with UV alone reaction increased 3.1 times. These results indicates the enhancement of reaction rate is closely related to the generation of OH radical. The degree of the iron sludge production observed in $Fe^{2+}/H_2O_2$ reaction was significantly reduced by irradiating UV in this process.

Numerical and Experimental Analyses Examining Ozone and Limonene Distributions in Test Chamber with Various Turbulent Flow Fields

  • ITO, Kazuhide
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.89-99
    • /
    • 2008
  • Indoor ozone has received attention because of its well-documented adverse effects on health. In addition to the inherently harmful effects of ozone, it can also initiate a series of reactions that generate potentially irritating oxidation products, including free radicals, aldehydes, organic acids and secondary organic aerosols (SOA). Especially, ozone reacts actively with terpene. The overarching goal of this work was to better understand ozone and terpene distributions within rooms. Towards this end, the paper has two parts. The first describes the development of a cylindrical test chamber that can be used to obtain the second order rate constant $(k_b)$ for the bi-molecular chemical reaction of ozone and terpene in the air phase. The second consists of model room experiments coupled with Computational Fluid Dynamics (CFD) analysis of the experimental scenarios to obtain ozone and terpene distributions in various turbulent flow fields. The results of CFD predictions were in reasonable agreement with the experimental measurements.