• Title/Summary/Keyword: Oxidation Powder

Search Result 554, Processing Time 0.027 seconds

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.

Comparison of Bioconversion Ability and Biological Activities of Single and Multi-Strain Probiotics for an Active Molecule in Roasted Tartary Buckwheat (단일 및 복합 프로바이오틱스 균주에 의한 쓴메밀 내 Rutin의 Quercetin으로의 생물전환 및 이의 생리활성 비교)

  • Song-in Kim;Eunbee Cho;Kyohee Cho;Chang Kwon;Seok-hee Lim;Jong Won Kim;Myung Jun Chung;Su Jeong Kim;Sanghyun Lim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • In this study, we aimed to evaluate the bioconversion ability of single (Lactiplantibacillus plantarum CBT LP3, Lactococcus lactis subsp. lactis CBT SL6, Streptococcus thermophilus CBT ST3) and multi-strain probiotics to convert rutin to quercetin in roasted tartary buckwheat, and to assess their biological activities. To evaluate the bioconversion efficiency, each strain was cultured for 24 h in MRS media with 5% roasted tartary buckwheat 'Hwangguem-Miso' powder. After then, rutin and quercetin contents were determined by HPLC. Additionally, the biological activities were compared before and after bioconversion of an ingredient. Anti-oxidant effects were measured by DPPH and ABTS assays. Anti-inflammatory effects were determined by measuring NO production, and levels of iNOS, TNF-α, IL-6 and IL-4 using an LPS-induced Raw 264.7 cell model. The bioconversion rate under the combination of three species of probiotics significantly increased more than single species. Antioxidant efficacy results showed the highest activity when the combination of three species of probiotics cultured. The pro-inflammatory factors such as nitric oxide, iNOS, TNF-a, and IL-6 were significantly decreased when the three types of probiotics were combined than single strain was cultured. In addition, level in the anti-inflammatory factor IL-4 was increased. The multi-strain probiotics showed increased bioconversion efficiency, effects of anti-oxidant and anti-inflammatory compared to the single strain. These findings suggest that the fermentation of tartary buckwheat by probiotics may be a valuable candidate for developing functional foods with anti-oxidation and anti-inflammation.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF