• 제목/요약/키워드: Oxidation/Reduction Potential

검색결과 336건 처리시간 0.027초

수은 연속측정시스템에서 전이금속에 의한 산화수은의 원소수은으로의 촉매환원 (Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS)

  • 함성원
    • 청정기술
    • /
    • 제20권3호
    • /
    • pp.269-276
    • /
    • 2014
  • 본 연구는 수은연속측정시스템의 가장 중요한 구성 요소의 하나인 산화수은을 원소수은으로 환원시킬 수 있는 건식 환원촉매시스템 개발을 목적으로 수행되었다. 산화-환원 표준전위를 기준으로 산화수은의 원소수은으로의 환원반응을 자발적으로 일으킬 수 있는 촉매 대상물질로 Fe, Cu, Ni 및 Co 4종류의 전이금속이 선택되었다. 이들 전이금속 촉매들은 산소가 없는 반응가스 조성에서 산화수은의 원소수은으로의 환원반응에 대해 높은 활성을 보였다. 그러나 산소가 존재하는 경우 환원 활성이 크게 감소하는데 이는 산소에 의해 해당 전이금속이 산화수은 환원 활성이 낮은 전이금속산화물로 변환되기 때문이다. 반응가스에 산소가 존재하여도 수소를 공급하면 산화수은 환원 활성이 크게 증가되는데 이는 산화수은의 환원반응이 진행되는 고온에서 산소와 수소 사이의 연소반응에 의해 산소가 소모되기 때문으로 확인되었다. Fe를 환원촉매로 하고 배기가스에 수소를 공급하는 산화수은 환원촉매시스템은 $SnCl_2$ 수용액을 사용하는 습식화학 환원기술에 필적할 수준의 활성을 나타내기 때문에 상업적으로 적용 가능한 산화수은 환원시스템으로 기대된다.

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

매립지의 메탄 발생억제를 위한 황산염 첨가형매립지 및 준호기성 매립지의 효율 비교에 대한 연구 (A comparative study on efficiency in the sulfate -added anaerobic landfill site and the semi-aerobic landfill site for the inhibition of methane genration from a landfill site)

  • 김정권;김부길
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.325-330
    • /
    • 1999
  • This study aims to observe the inhibition of methane generation, the decomposition of organic matter, and the trend of outflowing leachate, using the simulated column of the anaerobic sanitary landfill structure of sulfate addition type which is made by adding sulfate to a current anaerobic landfill structure, and the simulated column of semi-aerobic landfill structure in the laboratory which is used in the country like Japan in order to inhibit methane from a landfill site among the gases caused by a global warming these days, and at the same time to promote the decomposition of organic matter, the index of stabilization of landfill site. As a result of this study, it is thought that the ORP(Oxidation Reduction Potential) of the column of semi-aerobic landfill structure gradually represents a weak aerobic condition as time goes by, and that the inside of landfill site is likely to by in progress into anaerobic condition, unless air effectively comes into a semi-aerobic landfill structure in reality as time goes by. In addition, it can be seen that the decomposition of organic matter is promoted according to sulfate reduction in case of $R_1$, a sulfate-added anaerobic sanitary landfill structure, and that the stable decomposition of organic matter in $R_1$ makes a faster progess than $R_2$. Moreover it can be estimated that $R_1$, a sulfate-added anaerobic sanitary landfill structure has an inhibition efficiency of 55% or so, compared with $R_2$, a semi-aerobic landfill structure, in the efficiency of inhibiting methane.

  • PDF

질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션 (Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options)

  • 김문현
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

Ni-Zn 레독스 플로우 전지에 있어서 양극의 전기화학적 특성에 미치는 쉬트 형상의 Ni 나노분말 첨가 효과 (Addition Effects of Sheet-like Ni Nanopowder on the Electrochemical Properties of Positive Electrode in Ni-Zn Redox Flow Battery)

  • 석혜원;김세기;강양구;홍연우;이영진;김범수;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.582-588
    • /
    • 2014
  • 3 mol% Co-added $Ni(OH)_2$ fine powders, which showed ${\beta}$-phase, as positive electrode materials have been fabricated using $NiSO_4{\cdot}6H_2O$ aqueous solution by ultrasonic spray-chemical precipitation and subsequent hydrothermal method, and sheet-like Ni nanopowder was fabricated by mechano-chemical reduction method. The addition effects of the sheet-like Ni nanopowder on the electrochemical properties of the positive electrode in Ni-Zn Redox flow battery were investigated. Impedance spectroscopy revealed that the addition of the sheet-like Ni nanopowder resulted in decrease in the electrical resistivity; 10 wt.% addition reduced the electrical properties by a fifth. Cyclic voltammetry showed the addition of the sheet-like Ni nanopowder resulted in decrease in the potential difference of oxidation and reduction; this means the increase in the reversability for electrode reduction. Charge/discharge measurement confirmed that the addition of the sheet-like Ni nanopowder resulted in the increase in the discharge efficiency.

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

철전극 표면 부동화막의 생성과 초기단계의 변화 (The Early Stages of Formation of the Passivation Film on Iron Electrode. Electrochemical and Automatic Ellipsometry Investigation)

  • 여인형;백운기
    • 대한화학회지
    • /
    • 제28권5호
    • /
    • pp.271-278
    • /
    • 1984
  • 염기성 용액에서 기계적으로 연마한 고순도 철의 전위를 환원 전위로부터 부동화 전위로 급격히 변화시켜서 부동화 막이 전극표면에 형성되게 하면서 철의 반사율 변화와 타원편광반사법(Ellipsometry) 측정을 하였다. 철 표면이 부동화 될때 일어나는 반사광의 편광 파라메터(${\Delta},\;{\psi}$)와 반사율(R) 변화를 자동화된 타원편광반사계로 기록하였고, 이로부터 철을 부동화 상태에 들어가게 하는 표면막의 두께(${\tau}$)와 광학상수(n, k)들의 변화하는 값을 계산할 수 있었다. 광학상수 값들로 나타나는 막의 성질이 시간에 따라 급격한 전이를 하는 것은 관찰되지 않았으며, 비교적 짧은 시간(수초)내에 정상 상태 값에 접근하였다. 효과적으로 부동화를 일으키는 막의 두께는 $14\;{\sim}\;23{\AA}$의 범위에 있었다. 형성된 부동화 막은 용액의 pH가 큰 경우에는 얇고 치밀한 구조를 가진 것으로 보이며, pH가 작은 경우에는 두께는 두껍지만 pH가 큰 경우보다 덜 치밀한 부동화 막이 형성되는 것으로 보였다. 이들 부동화 막은 약간의 흡광성을 가지는 것으로 나타났다.

  • PDF

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • 박제식;이철경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가 (The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis)

  • 조장환;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권2호
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.

아조벤젠기를 가진 지방산과 $L-{\alpha}-dimyristoylphosphatidylcholine$ 혼합 LB막의 전기화학적 특성 (Electrochemical Properties of Langmuir-Blodgett(LB) Films of Fatty Acid Containing Azobenzene and $L-{\alpha}-dimyristoylphosphatidylcholine$ Mixture)

  • 박근호;최성현;송주영
    • 한국응용과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.315-322
    • /
    • 2005
  • We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with 4-octyl-4'-(5-carboxylpentamethyleneoxy)azobenzene (denoted as 8A5H) and $phospholipid(L-{\alpha}-dimyristoylphosphatidylcholine$, denoted as DMPC). LB films of 8A5H monolayer and 8A5H-DMPC were deposited by using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured by using cyclic voltammetry with a three_electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0mol/L) of $NaClO_4$ solution. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rates were 50, 100, 150 and 200mV/s, respectively. As a result, LB films of 8A5H monolayer appeared irreversible process caused by only the oxidation current from the cyclic voltammogram and LB films of 8A5H-DMPC mixture were found to be caused by a reversible oxidation-reduction process.