• 제목/요약/키워드: Overtopping

검색결과 216건 처리시간 0.021초

기존댐 재개발시의 지반공학적 고려 (Geotechnical considerations for the existing dam rehabilitation)

  • 전제성;신동훈;김기영;조성은
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.589-596
    • /
    • 2005
  • The public has negative understanding about dam construction nowadays although dam plays an important role in water supply to satisfy essential demand for living. Dam rehabilitation, in this actuality, has been recognized as an alternative to expedite continuous water policies related to irrigation and flood control. This study focused on dam rehabilitation and included its necessity and discussions on case histories associated with increasing reservoir capacity, spillway modification, overtopping protection, seepage control and improving stability of old dam. This paper, in geotechnical aspects, presents discussions of various rehabilitation methods and factors to be considered in designing dam rehabilitation.

  • PDF

Development of Numerical Model for Flood Inundation Analysis in a River with GIS Application

  • Lee, Hong-Rae;Han, Kun-Yeun;Kim, Sang-Ho;Choi, Hyun-Sang
    • Korean Journal of Hydrosciences
    • /
    • 제10권
    • /
    • pp.59-72
    • /
    • 1999
  • FIAS(Flood Inundation Analysis System) using Arc/Info is developed and applied to the Namhan River basin. The DWOPER model is revised and expanded to handle simultaneous multiple overtopping and/or breaking, and to estimate the inundated depth and extents. The model is applied to an actual levee overtopping case, which occurred on August 23∼27, 1995 in the Namhan River. Stage hydrographs inside and outside of the levee are compared, then inundated discharges from overbank spilling are computed. The Graphic User interface is developed with AML. Two- and three-dimensional inundation map by Arc/Info are presented. The computed inundation extends agree with observations in terms of inundated depth and flooded area. The FIAS is useful for the analysis of flood hazards and preparation of inundation map for river basins.

  • PDF

하천 홍수범람해석을 위한 수치모형의 개발(II): 불확실도 해석 (Numerical Model for Flood Inundation Analysis in a River(II) : Uncertainty Analysis)

  • 이홍래;한건연;김상호
    • 한국수자원학회논문집
    • /
    • 제31권4호
    • /
    • pp.429-437
    • /
    • 1998
  • 기존의 DWOPER 모형에 대해서도 불확실도 기법을 이용한 홍수범람 해석을 위해 DWOPER-LEV 모형을 개발하였고, 하천의 홍수범람에 따른 제방의 월류위험도와 가능 범람범위를 예측할 수 있도록 하엿다. 본 연구에서는 홍수추적에 있어서의 하도단면의 기하형상과 수리저항계수에 기인한 불확실도의 영향을 검토하기 위해 Monte-Carlo 기법을 적용하였다. 개발된 모형은 남한강 유역의 실제 제방붕괴로 인한 홍수범람에 적용하여 제방의 월류위험도와 제내지에서의 가능 범람범위와 범람수심을 산정하였다.

  • PDF

신뢰성 해석에 의한 제방의 월류 위험도 산정 (Evaluation of Overtopping Risks of Levee by using Reliability Analysis)

  • 이철응;박동헌;심재욱
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.101-110
    • /
    • 2009
  • Due to frequent occurrence of a localized torrential downpour caused by global warming and change of outflow tendency caused by rapid urbanization and industrialization, risk analysis must be carried out in levee design with uncertainty. In this study, reliability analysis was introduced to quantitatively evaluate the overtopping risk of levee by the uncertainty. First of all, breaking function was established as a function of flood stage and height of levee. All variables of breaking function were considered as random variables following any distribution functions, and the risk was defined as the possibility that the flood stage is formed higher than height of levee. The risk evaluation model was developed with AFDA (Approximate Full Distribution Approach). The flood stage computed by 2-D numerical model FESWMS-2DH was used as input data for the model of levee risk evaluation. Risk for levee submergence were quantitatively presented for levee of Wol-Song-Cheon.

  • PDF

Prediction of Outflow Hydrograph caused by Landslide Dam Failure by Overtopping

  • Do, XuanKhanh;Kim, Minseok;Nguyen, H.P.T;Jung, Kwansue
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.196-196
    • /
    • 2016
  • Landslide dam failure presents as a severe natural disaster due to its adverse impact to people and property. If the landslide dams failed, the discharge of a huge volume of both water and sediment could result in a catastrophic flood in the downstream area. In most of previous studies, breaching process used to be considered as a constructed dam, rather than as a landslide dam. Their erosion rate was assumed to relate to discharge by a sediment transport equation. However, during surface erosion of landslide dam, the sediment transportation regime is greatly dependent on the slope surface and the sediment concentration in the flow. This study aims to accurately simulate the outflow hydrograph caused by landslide dam by overtopping through a 2D surface flow erosion/deposition model. The lateral erosion velocity in this model was presented as a function of the shear stress on the side wall. The simulated results were then compared and it was coherent with the results obtained from the experiments.

  • PDF

회파블록케이슨 방파제의 수리학적 성능에 관한 실험적 연구 (Experimental Study on Hydraulic Performance of Perforated Caisson Breakwater with Turning Wave Blocks)

  • 김인철;박기철
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.61-67
    • /
    • 2019
  • Recently, a perforated caisson breakwater with turning wave blocks was developed to improve the water affinity and public safety of a rubble mound armored by TTP. In this study, hydraulic model tests were performed to examine the hydraulic performance of a non-porous caisson and new caisson breakwater with perforated blocks for attacking waves in a small fishery harbor near Busan. The model test results showed that the new caisson was more effective in dissipating the wave energy under normal wave conditions and in reducing the wave overtopping rates under design wave conditions than the non-porous caisson. It was found that the horizontal wave forces acting on the perforated caisson were slightly larger than those on the non-porous caisson because of the impulsive forces on the caisson with the turning wave blocks.