• Title/Summary/Keyword: Overset Grid

Search Result 57, Processing Time 0.023 seconds

A Flow Characteristics for a Separation Behavior of Two-body Vehicle (비행 조건에 따른 비행체 단분리의 주위 유동장 해석)

  • Park, Geunhong;Kim, Kiun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.266-267
    • /
    • 2017
  • A numerical investigation of the stage separation behavior of two-body vehicle focusing on its flow characteristics were carried out. For this simulation, separation of a booster from vehicle was modeled by a chimera grid system and calculated by using commercial code, CFD-FASTRAN$^{TM}$. Consideration of a spring force, gravity and relative acceleration of a booster was the essential factor that simulates the realistic situation. In this study, It was validated that the booster separation time decreases with increase in flight mach number and angle of attack. In view of the results so far achieved, it was expected that the dynamics modeling and boundary condition set up applied in this study will be helpful in a estimation of a safe stage separation and event sequence of flight test.

  • PDF

A Study of Numerical Analysis for Stage Separation Behavior of Two-body Vehicle (비행체 단분리 거동 예측에 대한 수치 연구)

  • Park, Geunhong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.91-98
    • /
    • 2018
  • A numerical investigation of stage separation behavior of a two-body vehicle focusing on its flow characteristics is carried out. For this simulation, the separation of a booster from a vehicle is modeled using a chimera grid system and calculated with commercial code, $CFD-FASTRAN^{TM}$. Consideration of spring force, gravity and relative acceleration of a booster is the essential factor of a realistic simulation. In this study, it is validated that the booster separation time decreases with an increase in flight Mach number and angle of attack. In view of results thus far achieved, it is expected that the dynamics modeling and boundary condition set-up applied in this study will be useful for estimating safe stage separation and event sequencing of flight tests.

Prediction of Resistance and Planing Attitude for Prismatic Planing Hull using OpenFOAM (OpenFOAM을 이용한 주형체 활주선의 저항 및 항주자세 추정)

  • Shi, XiangYu;Zhang, Yang;Yum, Deuk-joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.313-321
    • /
    • 2019
  • The prediction of the hydrodynamic performance of a planing hull vessel is an important and challenging topic for computational fluid dynamic (CFD) applications to naval hydrodynamics. In this paper, the resistance and planing attitude analysis for a Fridsma hull, which is a prismatic planing hull, in still water are numerically studied using OpenFOAM. OpenFOAM is an open source code package based on C++ libraries and the finite volume method (FVM) for the discretization of the RANS equation. The volume of fluid method (VOF) is used to capture the water-air interface and the SST ${\kappa}-{\omega}$ model is used for the turbulence simulation. The overset mesh method is used to capture the large motion of the hull at higher speeds. Before the extensive analysis, uncertainty analyses using various time steps and grid sizes were performed for one ship speed case of Fn = 1.19. The results of the present study are compared with those of a model test, other CFD research, and Savitsky's empirical formula. The results of the present study, following the trend of other CFD results, slightly over predict the resistance and under predict the sinkage and, more significantly, the trim.

AERODYNAMIC AND NOISE CALCULATIONS OF HELICOPTER ROTOR BLADES USING LOOSE CFD-CSD COUPLING METHODOLOGY (CFD-CSD 연계 기법을 이용한 로터 블레이드 공력 및 소음 해석)

  • Kang, H.J.;Kim, D.H.;Wie, S.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.62-68
    • /
    • 2014
  • The aerodynamic and noise calculations were performed through the CFD-CSD loose coupling methodology. In the loose coupling process, the trimmed rotor airloads were predicted by the in-house CFD code based on unstructured overset meshes, and the trim of the rotorcraft and the aeroelastic deformation of rotor blades were accounted with the CAMRAD II rotorcraft comprehensive code. The set of codes was used to analyze the HART-II baseline test condition. The effect of grid resolution and time step was examined and the loose coupling approach was found to be stable and convergent for the case. Comparison of the resulting sectional airloads, structural deformations, the noise carpets and the wake geometry with experimentally measured data was presented and showed the good agreement.

Parametric Study of Transient Spoiler Aerodynamics with Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 스포일러 천이적 공력특성의 파라메트릭 연구)

  • Choi S. W.;Chang K. S.;Ok H. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.15-24
    • /
    • 2000
  • The transient response of an airfoil to a rapidly deploying spoiler is numerically investigated using the turbulent compressible Navier-Stokes equations in two dimensions. Algebraic Baldwin-Lomax model, Wilcox $\kappa-\omega$ model, and SST $\kappa-\omega$ turbulence model are used to calculate the unsteady separated flow due to the rapid spoiler deployment. The spoiler motion relative to a stationary airfoil is treated by an overset grid hounded by a Dynamic Domain-Dividing Line which has been devised by the authors. The adverse effects of the spoiler influenced by the spoiler location and the hinge gap are expounded. The numerical results are in reasonably good agreement with the existing experimental data.

  • PDF

Analysis on Aerodynamic Characteristics of the CRW Air-Vehicle (CRW 비행체의 공력특성 해석)

  • Choi Seong Wook;Kim Jai Moo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002 As an air vehicle for the Smart UAV, CRW(Canard Rotor/wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW First method was the superpose DATCOM method which is capable of three lifting sufaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.

Unsteady Flow Computation of a ]Rapidly Deploying Spoiler (빠르게 전개되는 스포일러의 비정상 유동해석)

  • Choi S. W.;Chang K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.127-139
    • /
    • 2000
  • Transient aerodynamic response of an airfoil to a rapidly deploying spoiler is numerically investigated using a two-dimensional turbulent compressible Navier-Stokes flow model. The spoiler moving relative to a stationary airfoil is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed first..in this paper. The fluid-dynamic mechanism of the adverse lift due to the rapidly deploying spoiler is analyzed. Also the effect of spoiler deploying rate on the initial behavior of the aerodynamic response is expounded, which is of interest in view of active control technology and controller design for the spoiler. The results of present computation about the stationary as well as moving spoilers are relatively in good agreement with the existing experimental data.

  • PDF

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

A numerical study on ship-ship interaction in shallow and restricted waterway

  • Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.920-938
    • /
    • 2015
  • In the present study, a numerical prediction method on the hydrodynamic interaction force and moment between two ships in shallow and restricted waterway is presented. Especially, the present study proposes a methodology to overcome the limitation of the two dimensional perturbation method which is related to the moored-passing ship interaction. The validation study was performed and compared with the experiment, firstly. Afterward, in order to propose a methodology in terms with the moored-passing ship interaction, further studies were performed for the moored-passing ship case with a Reynolds Averaged Navier-Stokes (RANS) calculation which is using OpenFOAM with Arbitrary Coupled Mesh Interface (ACMI) technique and compared with the experiment result. Finally, the present study proposes a guide to apply the two dimensional perturbation method to the moored-passing ship interaction. In addition, it presents a possibility that the RANS calculation with ACMI can applied to the ship-ship interaction without using a overset moving grid technique.

Analysis on Aerodynamic Characteristics of the CRW(Canard Rotor/wing) Air-Vehicle (CRW 비행체의 공력특성 해석)

  • Choi Seong Wook;Kim Jai Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.106-113
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002. As an air vehicle for the Smart UAV, CRW(Canard Rotor/Wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW. First method was the superpose DATCOM method which is capable of three lifting surfaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.

  • PDF