• 제목/요약/키워드: Overlay Map

검색결과 101건 처리시간 0.015초

하이퍼스펙트럴영상 분류에서 정준상관분류기법의 유용성 (Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification)

  • 박민호
    • 대한토목학회논문집
    • /
    • 제26권5D호
    • /
    • pp.885-894
    • /
    • 2006
  • 본 논문의 의도는 하이퍼스펙트럴 영상의 다량의 밴드를 사용하면서도 효율적인 분류기법의 개발에 초점을 두고 있다. 본 연구에서는 하이퍼스펙트럴 영상의 분류에 있어 이론적으로 밴드수가 많아질수록 분류정확도가 높을 것이라 예상되는, 다변량 통계분석기법중의 하나인 정준상관분석을 적용한 분류기법을 제안한다. 그리고 기존의 대표적인 전통적 분류기법인 최대 우도분류 방법과 비교한다. 사용되는 하이퍼스펙트럴 영상은 2001년 9월 2일 취득된 EO1-Hyperion 영상이다. 실험을 위한 밴드수는 LANDSAT TM 영상에서 열밴드를 제외한 나머지 데이터의 파장대와 일치하는 부분을 감안하여 30개 밴드로 선정하였다. 지상실제데이터로서 비교기본도를 채택하였다. 이 비교기본도와 시각적으로 윤곽을 비교하고, 중첩분석하여 정확도를 평가하였다. 최대우도분류의 경우 수역 분류를 제외하고는 전혀 분류기법으로서의 역할을 하지 못하는 것으로 판단되며, 수역의 경우도 큰 호수 외에 작은 호수나 골프장내 연못, 부분적으로 물이 존재하는 작은 영역 등은 전혀 분류하지 못하고 있는 것으로 나타났다. 그러나 정준상관분류결과는 비교기본도와 형태적으로 시각적 비교를 해볼 때 골프장잔디를 거의 명확히 분류해 내고 있으며, 도시역에 대해서도 고속도로의 선형 등을 상당히 잘 분류해내고 있음을 알 수 있다. 또한 수역의 경우도 골프장 연못이나 대학교내 연못, 기타지역의 연못, 웅덩이 등 까지도 잘 분류해내고 있음을 확인할 수 있다. 결과적으로 정준상관분석 알고리즘의 개념상 트레이닝 영역 선정시 시행착오를 겪지 않고도 정확한 분류를 할 수 있었다. 또한 분류항목 중에서 잔디와 그 외 식물을 구분해 내는 능력과 수역을 추출해 내는 능력이 최대우도분류기법에 비해 우수하였다. 이상의 결과로 판단해 볼 때 하이퍼스펙트럴영상에 적용되는 정준상관분류기법은 농작물 작황 예측과 지표수 탐사에 매우 유용하리라 판단되며, 나아가서는 분광적 고해상도 영상인 하이퍼스펙트럴 데이터를 이용한 GIS 데이터베이스 구축에 중요한 역할을 할 수 있을 것으로 기대된다.