• Title/Summary/Keyword: Overhead Conductor

Search Result 124, Processing Time 0.027 seconds

The Mechanical and Electrical behavior Changes of Overhead Conductor due to Forest Fire and Agents (소화약제 및 산불에 노출된 가공송전선의 전기적, 기계적 거동 변화)

  • Jang, Young-Ho;Kim, Byung-Geol;Kim, Shang-Shu;Han, Se-Won;Kim, Jin-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.242-247
    • /
    • 2009
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Oxidation of overhead conductor was increased with temperature and time(maximum time : 30min). Conductivity of Al conductor was decreased by Agents. The detailed will be given in the text.

A Study on Temperature and Tensile Load Analysis of Invar by Flame Exposure on Overhead Transmission Lines (화염노출에 의한 송전선로 인바 강심의 온도 및 인장하중 분석에 관한 연구)

  • Shin, Koo-Yong;Jung, Chae-Kyun;Lee, Sang-Yun;Kang, Ji-Won;Lee, Dong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1895-1901
    • /
    • 2009
  • This paper describes the conductor temperature and tensile load analysis of invar by flame exposure on STACIR(Super Thermal-resistance Aluminium-alloy Conductors Reinforced) overhead transmission line based on real fault phenomena. Firstly, short-circuit fault by flame exposure is analysed by EMTP/ATP simulation, then the cutting causes of Al layer are also discussed. And then, the conductor temperature is calculated based on IEC 60949 according to 3 kinds of materials including invar, Al conductor and ACSR when same load current respectively flows in 3 kinds of material, they are compared each other. Finally, the tensile load tests are performed with various samples including new invar, used invar for a long time and invar exposed flame.

Mechanical and Electrical Properties of Overhead Conductor due to Forest Fire (산불에 노출된 가공송전선의 기계적 및 전기적 특성 거동)

  • Kim, Byung-Geol;Jang, Young-Ho;Kim, Shang-Shu;Han, Se-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1042-1048
    • /
    • 2008
  • Forest Fire can cause a serious damage to overhead conductors. Therefore, the detailed investigation for the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is very much important to maintain transmission line safely. Especially, this paper describes the changes of mechanical and electrical properties of flame exposed conductor. Overhead conductors temperature were almostly 55$\sim$65% of ambient temperature. Tensile Strength decreased according to incerase of Forest Fire temperature. The detailed will be given in the text.

Evaluation for Lifetime and Thermal Ratings for Aged Overhead Transmission Lines (노후 가공송전선의 수명과 열용량의 평가)

  • Kim, Sung-Duck
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Thermal rating or lifetime evaluation for aged overhead transmission line becomes more important concerns with respect to keeping power delivery stable having proper capability. Both load rating and dip/clearance are essential factors to determine transmission capacity. In order to evaluate thermal rating and conductor lifetime for domestic transmission lines with double-circuit, the dip/ground clearance standards as well as the electrical equipment technical standard are examined. Conductor temperature and dip are calculated under the assumption of a contingency, and then, a method to up-rate load capacity is searched. As thermal rating and limit dip for aged conductor are properly evaluated, an improved strategy in order to guarantee the existing power system reliability is presented in this paper.

슬리브 시공유형별 기계적 및 열적 가속열화특성 분석 연구

  • An, Sang-Hyeon;Kim, Byeong-Geol;Kim, Sang-Su;Son, Hong-Gwan;Park, In-Pyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.286-286
    • /
    • 2009
  • According to previous report, aged sleeves for old transmission lines have various defect such as biased installation or corrosion of steel sleeve. These defects can cause serious accidents such as rapid increasing of sag or falling out of overhead conductor from sleeves. Moreover, the defects have been limited power capacity of transmission line. This paper study on mechanical and thermal behavior of ACSR $410mm^2$ conductor and sleeve with various defect model. The conductor has been aged artificially for 50 years. The detailed results were presented in the text.

  • PDF

Lifetime estimation of a covered overhead line conductor

  • Leskinen, Tapio;Kantola, Kari
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.307-324
    • /
    • 2003
  • The paper presents results of studies concerning wind-induced aeolian vibration and fatigue of a 110 kV covered conductor overhead line. Self-damping measurement techniques are discussed: power method is found to be the most reliable technique. A method for compensating tension variations during the self-damping test is presented. Generally used empirical self-damping power models are enhanced and the different models are compared with each other. The Energy Balance Analysis (EBR) is used to calculate the aeolian vibration amplitudes, which thereafter are converted to bending stress for the calculation of conductor lifetime estimate. The results of EBA are compared with field measurements, Results indicate that adequate lifetime estimates are produced by EBA as well as field measurements. Generally the EBA gives more conservative lifetime expectancy. This is believed to result from the additional damping existing in true suspension structures not taken into account by EBA. Finally, the correctness of the line design is verified using Cigre's safe design tension approach.

Effect of Ambient Temperature and Current on Overhead Conductor (가공송전선의 열적거동과 전류 및 외기온도의 영향)

  • Kim Shang-Shu;Kim Byung-Geol;Hyun Suk-Kyu;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.486-491
    • /
    • 2006
  • A research was undertaken on the thermal properties and behavior of the conductors in a controlled chamber, which was designed to implement the outdoor air temperature, heat and wind conditions. With ACSR $410mm^2$ overhead conductors, we measured the maximum temperature of the conductors and the temperature gradient from the core to the surface regions as a function of current, tension, wind velocity and outdoor air temperature. This test also provided a comparative analysis between the measured temperature values of conductors in the controlled chamber and the theoretical calculations of ANSI/IEEE at normal condition.

A Study on Overvoltage Reduction Method of Single Point Bonded Section on Combined Transmission Lines (혼합송전선로 편단접지 구간 과전압 저감 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Park, Hung-Sok;Kim, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1881-1887
    • /
    • 2009
  • This paper discusses the effects of ECC (Earth Continuity Conductor) for reducing the level of induced sheath overvoltages at the single point bonded section of combined transmission lines which are mixed underground power cable with overhead line in one T/L. In previous papers, the characteristics of ECC on only underground power cable systems were sufficiently analyzed. However, the result of only underground power cable systems are totally different from that of combined transmission lines because ECC is commonly grounded with overhead grounding wire at mesh of cable head. Therefore, in this paper, the installation effects of ECC have been variously analyzed considering the three kinds of fault positions, cable formation of duct and trefoil, spacing between phase conductor and ECC, and the change of overhead transmission line section length on 154kV combined transmission line. Finally, simulation results show that ECC can effectively reduce the induced sheath voltage.

A Stability Estimation Method of Subspan Oscillation on Overhead Transmission Lines (가공송전선로의 서브스판 진동에 대한 안정성 평가기법)

  • Sohn, Hong-Kwan;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.522-524
    • /
    • 2003
  • This paper presents a stability estimation method for subspan oscillation on overhead transmission line. It has been used method by conductor's fatigue limit or subspan oscillation amplitude. But it is not proper to estimation of subspan oscillation. We suggest to instability index for estimation method of subspan oscillation. And we tried to 4 bundled conductor system. This result will use to establish of the subspan location rules.

  • PDF

Galloping of overhead transmission lines in gusty wind

  • Ohkuma, Takeshi;Marukawa, Hisao
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.243-253
    • /
    • 2000
  • To develop galloping suppression devices, it is important to understand the effects of wind turbulence on galloping and to establish an evaluation method which takes 'large conductor deformations' into account. This paper introduces some findings on galloping in gusty wind obtained by numerical simulation using a model based on the Mogami Test Line of the Tokyo Electric Power Co. The equations of motion of the conductor are based on the Lagrangian formulations by Simpson, and they are made discrete in accordance with a finite element method.