• Title/Summary/Keyword: Overhanging structure

Search Result 7, Processing Time 0.021 seconds

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

A Study on Part Deformation by Strand Spacing Change in Support Structure of Stereolithography (광조형의 지지대 구조에서 Strand 간격 변화에 대한 파트형상 변형에 관한 연구)

  • Ahn D.K.;Ha Yeong-Myeong;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.753-756
    • /
    • 2005
  • Rapid prototyping (RP) technologies are mainly performed by layered manufacturing (LM) process which manufactures 3D physical objects by depositing 2D sections in a direction. Thus, deformations are apt to occur in overhanging area of the RP processed part. Also, excessive adhesion between part and platform of the RP apparatus is generated. In order to prevent these problems, most of the RP technologies adopt support structure. Main element to support a part in the support structure is strand. In actual field, however, the number of strand is determined by the software operating reference guide or RP system operator's experience. In this paper, a methodology to determine the optimal strand spacing is presented through experiments and measurements for the SL part deformation by change of strand spacing and part weight in the support structure of the stereolithography.

  • PDF

Construction of a 300-Meter Vertical City: Abeno Harukas

  • Mizutani, Kenichi;Hirakawa, Kiyoaki;Nakashima, Masato
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.199-207
    • /
    • 2015
  • Abeno Harukas is the tallest building in Japan and is located in Abeno, which is one of the three main railway transport nodes in Osaka. This building has a height of 300 meters, and its lowest levels are 30 meters below ground. It contains a department store, museum, offices, a hotel, and an observatory. In this urban renewal project, a section of the department store that encloses the station was dismantled and replaced by a supertall building complex, while infrastructure was simultaneously constructed, including: upgrades to the station and the existing department store, improved connections to the subway and pedestrian bridges, and a new pedestrian walkway over the road. In this paper, the ingenious erection processes, newly developed technologies, and precise construction management techniques are introduced for Japan's tallest building.

Mechanical Property of Photocurable Hydrogel Fiber by Light Intensity (빛의 강도에 따른 광경화성 하이드로겔 섬유의 기계적 물성)

  • Lee, Sangmin;Chu, Bokyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.38-43
    • /
    • 2021
  • Photocurable hydrogels are widely used as 3D printing materials in tissue engineering (e.g., scaffold fabrication) as well as optical fibers (or optical sensors) materials. Photocurable hydrogels can control optical and mechanical properties such as chemical or fabrication conditions. In previous research, we introduced a new 3D printing method to fabricate a freestanding overhanging hydrogel structure without supporting structure. This study was measured and analyzed the difference of the mechanical properties of the photocurable hydrogel according to the light intensity using a micro tensile tester. In practically, it was difficult to perform a direct tensile test on a micro (less than 1 mm) size fiber. In this study, the tensile test of the hydrogel fibers could be measured simply and repeatedly using a paper carrier.

Estimation of Optimum Pile length Using Various Prediction (다양한 예측기법을 이용한 현장타설말뚝의 최적길이 산정)

  • Choi, Young-Seok;Iim, Hyung-Joon;Song, Myung-Jun;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.700-707
    • /
    • 2008
  • As plan connecting island to island or island to land is needed, a lot of long-span bridge is being designed lately in Southern part of Korea. With development of pile equipment, overhanging large-scaled concrete pile are adopted to foundation type of main tower or pylon. About the number of 15~30 group piles per tower foundation is designed to resist long-spaning super-structure load, but by restricted condition of site investigation cost, a few boring-hole tests are performed to identify sub-ground layers. Up to now, direct-curved method connecting two or three known boring logs and representative interval method are usually used to evaluate unknown depth and rock properties at locations where piles are constructed. Because this approach is not logical and so rough, much difference occurs between designed length of piles and real length of it. In this paper, using a lot of various prediction method(reciprocal distance method, inverse square distance method and kriging method etc.), we suggest optimum length of group piles.

  • PDF

A Study on the Failure Behavior of Overhanging Geosynthetic-Reinforced Soil Structure Considering Dilatancy Characteristics of Compacted Soil (다짐토의 다일러턴시 특성을 고려한 역경사형 토목섬유 보강토 구조물의 파괴 거동 분석)

  • Kim Eun-Ra;Kang Ho-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.65-75
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted as an effect arising from the reinforcement works preventing the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan (1994), and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could explain effectively the experimental results which are obtained by a full-scale in-situ model test.

An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure (역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.3-12
    • /
    • 2004
  • In this paper, a mechanism of the soil structure reinforced by geosynthetics is discussed. The reinforcing mechanism is interpreted an effect arising from the reinforcement works so as to prevent the dilative deformation (negative dilatancy) of soil under shearing. A full-scale in-situ model test was carried out in Kanazawa of Japan(1994) and in the laboratory test the strength and the characteristics of deformation conducting a constant volume shear test are examined. The parameters needed in the FEM are also applied by using the experimental data. The elasto-plastic finite element simulation is carried out, and the results are quantitatively compared with that of experiment. As a results, it is known that the theoretical predictions could be explained effectively the experimental results which are obtained by a full-scale in-situ model test.

  • PDF