• 제목/요약/키워드: Overhanging structure

검색결과 7건 처리시간 0.019초

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

광조형의 지지대 구조에서 Strand 간격 변화에 대한 파트형상 변형에 관한 연구 (A Study on Part Deformation by Strand Spacing Change in Support Structure of Stereolithography)

  • 안대건;하영명;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.753-756
    • /
    • 2005
  • Rapid prototyping (RP) technologies are mainly performed by layered manufacturing (LM) process which manufactures 3D physical objects by depositing 2D sections in a direction. Thus, deformations are apt to occur in overhanging area of the RP processed part. Also, excessive adhesion between part and platform of the RP apparatus is generated. In order to prevent these problems, most of the RP technologies adopt support structure. Main element to support a part in the support structure is strand. In actual field, however, the number of strand is determined by the software operating reference guide or RP system operator's experience. In this paper, a methodology to determine the optimal strand spacing is presented through experiments and measurements for the SL part deformation by change of strand spacing and part weight in the support structure of the stereolithography.

  • PDF

Construction of a 300-Meter Vertical City: Abeno Harukas

  • Mizutani, Kenichi;Hirakawa, Kiyoaki;Nakashima, Masato
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.199-207
    • /
    • 2015
  • Abeno Harukas is the tallest building in Japan and is located in Abeno, which is one of the three main railway transport nodes in Osaka. This building has a height of 300 meters, and its lowest levels are 30 meters below ground. It contains a department store, museum, offices, a hotel, and an observatory. In this urban renewal project, a section of the department store that encloses the station was dismantled and replaced by a supertall building complex, while infrastructure was simultaneously constructed, including: upgrades to the station and the existing department store, improved connections to the subway and pedestrian bridges, and a new pedestrian walkway over the road. In this paper, the ingenious erection processes, newly developed technologies, and precise construction management techniques are introduced for Japan's tallest building.

빛의 강도에 따른 광경화성 하이드로겔 섬유의 기계적 물성 (Mechanical Property of Photocurable Hydrogel Fiber by Light Intensity)

  • 이상민;추보경
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.38-43
    • /
    • 2021
  • Photocurable hydrogels are widely used as 3D printing materials in tissue engineering (e.g., scaffold fabrication) as well as optical fibers (or optical sensors) materials. Photocurable hydrogels can control optical and mechanical properties such as chemical or fabrication conditions. In previous research, we introduced a new 3D printing method to fabricate a freestanding overhanging hydrogel structure without supporting structure. This study was measured and analyzed the difference of the mechanical properties of the photocurable hydrogel according to the light intensity using a micro tensile tester. In practically, it was difficult to perform a direct tensile test on a micro (less than 1 mm) size fiber. In this study, the tensile test of the hydrogel fibers could be measured simply and repeatedly using a paper carrier.

다양한 예측기법을 이용한 현장타설말뚝의 최적길이 산정 (Estimation of Optimum Pile length Using Various Prediction)

  • 최영석;임형준;송명준;장학성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.700-707
    • /
    • 2008
  • As plan connecting island to island or island to land is needed, a lot of long-span bridge is being designed lately in Southern part of Korea. With development of pile equipment, overhanging large-scaled concrete pile are adopted to foundation type of main tower or pylon. About the number of 15~30 group piles per tower foundation is designed to resist long-spaning super-structure load, but by restricted condition of site investigation cost, a few boring-hole tests are performed to identify sub-ground layers. Up to now, direct-curved method connecting two or three known boring logs and representative interval method are usually used to evaluate unknown depth and rock properties at locations where piles are constructed. Because this approach is not logical and so rough, much difference occurs between designed length of piles and real length of it. In this paper, using a lot of various prediction method(reciprocal distance method, inverse square distance method and kriging method etc.), we suggest optimum length of group piles.

  • PDF

다짐토의 다일러턴시 특성을 고려한 역경사형 토목섬유 보강토 구조물의 파괴 거동 분석 (A Study on the Failure Behavior of Overhanging Geosynthetic-Reinforced Soil Structure Considering Dilatancy Characteristics of Compacted Soil)

  • 김은라;강호근
    • 한국지반공학회논문집
    • /
    • 제20권9호
    • /
    • pp.65-75
    • /
    • 2004
  • 본 연구는 토목섬유 보강토 구조물의 보강 메카니즘을 규명하고자 하는 목적으로 실시하였으며, 여기서 보강 메카니즘은 전단에 의한 다짐토의 체적 팽창(부의 다일러턴시)을 토목섬유에 의해 구속 억제하는 과정에서 생성되는 효과로 간주하고 있다. 실물 현장시험은 일본 Kanazawa(1994)에서 실시했으며, 실내시험으로는 등체적 전단시험을 실시하여 강도 및 변형특성을 조사하였고, 시험결과를 이용하여 유한요소해석에 필요한 재료 파라메타를 결정하였다. 또한, 탄소성 유한요소 해석을 실시하여 이론치와 실험 결과치를 정량적으로 비교 분석되었으며, 그 결과 유한요소 해석이 현장 시험을 유용하게 설명할 수 있는 것을 알 수 있었다.

역경사형 토목섬유 보강토 구조물에 탄소성 모델의 적용 (An Application of Elasto-Plastic Model to Overhanging Geosynthetic-Reinforced Soil Structure)

  • 김은라;;김유성
    • 한국지반신소재학회논문집
    • /
    • 제3권4호
    • /
    • pp.3-12
    • /
    • 2004
  • 본 연구는 토목섬유 보강토 구조물의 보강 메카니즘을 규명하고자 하는 목적으로 실시하였으며, 여기서 보강 메카니즘은 전단에 의한 다짐토의 체적 팽창(부의 다일러턴시)을 토목섬유에 의해 구속 억제하는 과정에서 생성되는 효과로 간주하고 있다. 실물 현장시험은 일본 Kanazawa(1994)에서 실시했으며, 실내시험으로는 등체적 전단시험을 실시하여 강도 및 변형특성을 조사하였고, 시험결과를 이용하여 유한요소해석에 필요한 재료 파라메타를 결정하였다. 또한, 탄소성 유한요소 해석을 실시하여 이론치와 실험 결과치를 정량적으로 비교 분석되었으며, 그 결과 유한요소 해석이 현장 시험을 유용하게 설명할 수 있는 것을 알 수 있었다.

  • PDF