• Title/Summary/Keyword: Overfiring

Search Result 3, Processing Time 0.016 seconds

Behavior of Isolated Pores during Liquid Phase Sintering of $MgO-CaMgSiO_4$ System ($MgO-CaMgSiO_4$ 계 액상소결중의 고립기공거동)

  • 송병무;김정주;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 1985
  • A theoretical model describing the behavior of isolated pores during liquid phase sintering was developed and the experimental results obtained by the $80MgO-CaMgSiO_4$ specimens were given. Most of isolated pores once formed in the interior of specimen were not eliminated because the pressure of trapped non-diffusable gas in the pore like $N_2$ increases very rapidly with pore volume contraction. As sint-ering time increase it was observed that the number of pores decreases whereas the average size of pore increases. This phenomenon was interpreted in terms of the MgO growth during sintering which results in the coalescence of isolated pores. The increase of pore size resulting from pore coalescence was attributed to the main cause of the overfiring phenomena ; the higher sintering temperature or a long time sintering leads to a decrease in density.

  • PDF

Characteristics of Sintered Bodies Made from the System of Paper Sludge Ash - Fly Ash - Clay (종이재-석탄회-점토계 소지를 이용한 소결체의 특성 연구)

  • Hong, Jin-Ok;Kang, Seung-Gu;Lee, Ki-Gang;Kim, Yoo-Taek;Kim, Young-Jin;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.908-913
    • /
    • 2001
  • Paper sludge Ash (PA) and Fly Ash (FA) wastes are usually land-filled for reclamation or substituted for cements as a resource. It could also offer some advantages when they are substituted for clay to preserve the environment. To recycle those wastes, the sintered specimen made of PA-FA-Clay system were examined to find the microstructure and physical properties. The ratio of clay to wastes was fixed as 30:70 by wt%, while PA to FA within waste portion were varied in the range of $1:6{\sim}7:0$. Those specimens were fired in $1150{\sim}1350^{\circ}C$. It was found that the relative density of sintered specimen was increased with amount of PA added at low sintering temperature (i.e, $1150{\sim}1200^{\circ}C$). This is due to increased amount of liquid during sintering. It is shown, however that at high sintering temperature ($1250{\sim}1350^{\circ}C$), the relative density of specimens was decreased with amount of PA added. This is because of overfiring phenomenon which may be able to induce an inhomogeneous microstructure and increased porosity. The mechanical properties of sintered specimen were depended upon the homogeneity of microstructure in accordance with SEM (Scanning Electron Microscopy) and pore size distribution analysis. For example, the compressive strength of 10PA-60FA-30Clay specimen sintered at $1225^{\circ}C$ was twice higher than that of 70PA-30Clay specimen even thought the relative density of those specimen was similar. This decreased strength of 70PA-30Clay specimen appears to be an inhomogeneity of microstructure due to overfiring.

  • PDF

Interpretation of Firing Temperature and Thermal Deformation of Roof Tiles from Ancient Tombs of Seokchon-dong in Seoul, Korea (서울 석촌동 고분군 출토 기와의 소성온도와 열변형 특성 해석)

  • Jin, Hong Ju;Jang, Sungyoon;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.671-687
    • /
    • 2021
  • This study investigated the firing temperature and thermal deformation process of roof tiles excavated from the connected stone-mound tomb in Seokchon-dong, Seoul, based on mineralogical and physical properties. A large number of roof tiles were excavated from the tomb site and some roof tiles were deformed by heat and were fired in uneven conditions. The colors of original roof tiles and their cores are mostly yellowish-brown, with high water absorption over 12%, containing fine-grained textures and some minerals such as quartz, feldspars, amphibole, and mica. It is estimated that the original roof tiles were fired below 900℃ in oxidation condition, showing loose matrices and mica layers by scanning electron microscopy. However, deformed roof tiles have the uneven surface color of reddish-brown and bluish-gray, and those cross-sections have sandwich structures in which dense reddish-brown surface and porous grey core coexist. They contained mullite and hercynite, so it was estimated to have been fired over 1,000℃, with 0.81~11% water absorption. In some samples, bloating pores by overfiring were observed, which means that they were fired at more than 1,200℃. In addition, the refirng experiments that the original roof tile was fired between 800℃ and 1,200℃ were carried out to investigate the physical and mineralogical properties of roof tiles compared to deformed ones. As a result, the water absorption decreased rapidly and the mineral phase started to change over 1,000℃. As the temperature gradually rises, the matrices are partially melted and recrystallized, resulting in similar thermal characteristics of deformed roof tiles. Therefore, the roof tiles from ancient tombs in Seokchon-dong seem to experience the secondary high temperature of 1,000 to 1,200℃ under uneven firing conditions, resulting in deformation characteristics such as shape transformation and mineral phase transition. It is considered to have been related to cremation rituals at the tombs of Seockchon-dong during the Baekje period.