• 제목/요약/키워드: Overburden stress effect

검색결과 22건 처리시간 0.018초

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

소양강(昭陽江)댐의 거동(擧動)에 대한 유한요소해석(有限要素解析)과 실측치(實測値)와의 비교(比較) (Finite Element Analysis on the Behavior of Soyanggang Dam and its Comparison with Observed)

  • 김상규;임희대
    • 대한토목학회논문집
    • /
    • 제7권1호
    • /
    • pp.141-150
    • /
    • 1987
  • 1973년(年)에 완공(完工)된 소양강댐은 매설계기가 잘 설치되어 그 댐의 응력(應力)과 변형(變形)의 측정결과는 이미 발표된 바 있다. 그러나 이론적(理論的)인 해석은 지금까지 이루어지지 않았다. 본(本)연구(硏究)는 시공시(施工時) 재료의 자중을 받고 또 담수시 물 하중을 받게 되는 댐 본체의 응력(應力)과 변형(變形) 거동을 수치적(數値的)으로 해석하려는데 그 목적(目的)이 있다. 해석(解析)에 사용(使用)된 구성법칙(構成法則)은 Duncan 등(等)이 개발한 hyperbolic 모델이며, 시공단계(施工段階)를 모방한 비선형증가(非線型增加) 유한요소해석(有限要素解析)이 본(本) 연구(硏究)에 적용되었다. hyperbolic 파라미터들은 문헌에서 추정하여 사용(使用)하였다. 이론적(理論的) 해석(解析)으로부터 얻어진 결과는 댐의 임의의 단면에서의 변형특성과 응력벡타를 명확(明確)하게 나타내었다. 해석결과는 최대단면(最大斷面)에서의 변형측정치(變形測定値)와 잘 일치(一致)하였으나 수평변형(水平變形)과 심벽(心壁)에 생긴 응력에 있어서는 약간의 차이를 보였다. 수치해석과 측정치와의 비교(比較)로부터 얻은 본댐의 거동의 특징(特徵)은 심벽에서 비교적(比較的) 큰 시공침하(施工沈下)가 생겼고, 심벽의 토피하중(土被荷重)은 아아칭 효과에 의해 상당히 감소되었고, 또 양안부근(兩岸附近)에서는 수평변위(水平變位)가 커서 인장구역(引張區域)이 생길 수 있다는 것이다.

  • PDF