• Title/Summary/Keyword: Over-excitation

Search Result 294, Processing Time 0.022 seconds

Design of 3MW Class Outer Rotor Type PMSG for Wind Turbine (풍력발전용 3MW급 외부회전자형 영구자석 동기발전기 설계)

  • Kim, Tae-Hun
    • New & Renewable Energy
    • /
    • v.6 no.4
    • /
    • pp.41-49
    • /
    • 2010
  • Over the last decade, wind turbine industry has rapidly increased around world. These days many parts of the wind generators are induction generator. But it has some problems such as gearbox failure, rotor excitation and maintenance. Thus many manufacturers are considered permanent magnet synchronous generator named PMSG and direct drive. PMSG uses NdFeB magnet has many the advantage compare with induction generator. In this study, 3MW class outer rotor type PMSG for wind turbine is proposed. The generator features 2.6m stator outer radius, 1200mm stator length, 81 pole pairs, 14 rated rpm, 42kN/$m^2$ shear force density and 94.2% efficiency. Design and analysis generator using FEM program. Then calculate and derivate no load voltage, losses, conductor temperature. To reduce total harmonic distortion and cogging torque, the stator is applied the stator skewing. And to evaluate the designed generator, compare with other generators by active mass per rating torque and torque density.

Dynamic Analysis of Aircraft Landing Gear under Nonstationary Random Excitations (비정상 랜덤 가진력을 받는 항공기 착륙장치의 동특성 해석)

  • 황재혁;유병성;박명호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.60-68
    • /
    • 1997
  • The motion of an aircraft landing gear over rough runway at variable speed is nonstationary. In this paper a method for the computation of nonstationary response variance is presented which uses a state space form for the combination of landing gear and runway excitation. The dynamic characteristics of the landing gear under nonstationary random excitations has also been analyzed using the proposed method. The formulation is for linear systems of arbitrary order and allows any deterministic velocity history. It has been found by a series of simulation that correlation parameter, damping coefficients of landing gear and tire, and velocity profiles plays a prominent role on the dynamic characteristics.

  • PDF

Diaphragm-Type Pressure Sensor with Cu-Ni Thin Film Strain Gauges-II : Design Fabrication and Characteristics of a Pressure Sensor (Cu-Ni 박막 스트레인 게이지를 이용한 다이어프램식 압력 센서-II:압력 센서의 설계 제작의 특성)

  • 민남기;전재형;박찬원
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1022-1028
    • /
    • 1997
  • In this paper we present the construction details and output characteristics of a diaphragm-type pressure sensor with Cu-Ni(53:47) thin-film strain gauges. In order to improve the sensitivity and the temperature compensation two circumferential gauges are placed near the center of the diaphragm and two radial gauges are located near the edge. For all the gauges the relative change in resistance ΔR/R with pressure is of the order 10$^{-3}$ for the maximum pressure. The output is found to be linear over the entire pressure range(0-30kfg/cm$^2$)and the output sensitivity obtained is 1.6mV/V. The maximum nonlinearity observed in output characteristics is 0.35%FS for 5V excitation and the hysteresis is less than 0.1%FS.

  • PDF

Application of Fuzzy-PSS to KEPCO power system and stability enhancement (퍼지형 전력계통안정화제어기의 실계통 적용 및 안정도 향상)

  • Choi, Kyung-Sun;Lee, Dong-In;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1052-1055
    • /
    • 1997
  • The importance of dynamic stability of power system is increasing as the excitation system using static type are greatly enlarged. There are several types of PSS at Present, Elements of PSS consist of Notch filter, lead-lag filter, washout limiter which are variable. The existing power system has a difficulty in determining the optimal PSS parameters whenever PSS is installed. And it is recommended to retune PSS parameters periodically because system characteristics change due to aging. In this paper, intelligent PSS using fuzzy concept is introduced to get over difficulties mentioned above. The usefulness of fuzzy-type PSS was verified by applying FPSS to KEPCO power system. Generally, the voltage regulation deteriorates if conventional PSS is applied because supplementary signal is added into AVR summing point to damp Power oscillation. In this paper this problem is solved by AVR limiter and fuzzy members tuning.

  • PDF

A Study on the Longitudinal Vibration of Elevator (승강기의 종진동에 관한 연구)

  • Song, Dal-Ho;Lee, Yu-Jin;Choe, Yeong-Hyu
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.5-14
    • /
    • 1989
  • Analytical and experimental studies are performed to identify the longitudinal vibration characteristics of elevator system such as the natural frequencies, and the magnification factor at resonance. In the analytical study, a computer program is developed to analyze the vibration characteristics of elevator with varing rope length of elevtor, stiffenss of thimble rod spring, and excitation frequency. The shorter rope length and the stiffer thimble rod spring make the natural frequencies of elevator higer. The resonance at the first natural frequency spreads over the entire travelling range, whereas, that at the second one ranges relatively short, region. The first natural frequencies of the Gald-Star Twin Building and the Korea Trading Center Building obtained by the experiment are overall in good agreement with the analysis result..

  • PDF

Direction Assignment of Left Eigenvector in Linear MIMO System (선형 다변수 입출력 시스템에서 좌 고유벡터의 방향 지정)

  • Kim, Sung-Hyun;Yang, Hyun-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • In this paper, we propose novel eigenstructure assignment method in full-state feedback for linear time-invariant MIMO system such that directions of some left eigenvectors are exactly assigned to the desired directions. It is required to consider the direction of left eigenvector in designing eigenstructure of closed-loop system, because the direction of left eigenvector has influence over excitation by associated input variables in time-domain response. Exact direction of a left eigenvector can be achieved by assigning proper right eigenvector set satisfying the conditions of the presented theorem based on Moore's theorem and the orthogonality of left and right eigenvector. The right eigenvector should reside in the subspace given by the desired eigenvalue, which restrict a number of designable left eigenvector. For the two cases in which desired eigenvalues are all real and contain complex number, design freedom of designable left eigenvector are given.

A Current Differential Relaying Algorithm for Power Transformers Using an Advanced Compensation Algorithm of CTs (잔류자속에 무관한 전류보상 알고리즘을 적용한 변압기 보호용 전류차동 계전방식)

  • Kang, Y.C.;Lim, U.J.;Yun, J.S.;Jin, E.S.;Won, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.314-316
    • /
    • 2003
  • To prevent maloperation during magnetic inrush and over-excitation, a current differential relay for power transformers uses harmonic current based restraining or blocking scheme; it also uses dual slope characteristics to prevent maloperation for an external fault with CT saturation. This paper proposes a current differential relaying algorithm for power transformers with an advanced compensation algorithm for the secondary current of CTs. The comparative study was conducted with and without the compensating algorithm. The algorithm can reduce the operating time of the relay in the case of an internal fault and improve security for external faults.

  • PDF

Flux Linkages Ratio-Based Transformer Protection (쇄교자속비를 이용한 변압기 보호)

  • 강용철;이병은;김은숙;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.11
    • /
    • pp.655-660
    • /
    • 2003
  • This paper describes a transformer protective relaying algorithm based on the ratio of increments of flux linkages (RIFL) of the primary and secondary windings. The algorithm uses integration approximation. The RIFL is equal to the turns ratio for all operating conditions except for an internal fault. For a single-phase transformer and a Y-Y transformer, the increments of flux linkages (IFL) are calculated. For a Y-$\Delta$ transformer, the difference of IFL are calculated to use the line currents rather than the delta winding currents, which are unavailable. Their ratios are compared with the turns ratio. The comparative study between the proposed and conventional differentiation approximation methods was conducted. The test results show that the algorithm reduces the approximation errors of the conventional methods.

A Current Differential Relay for Transformer Protection with a Blocking Method Using the Difference-Function of a Differential Current (차전류 차분 블로킹 변압기 보호용 전류차동 계전기)

  • 강용철;원성호;김대성;양성채
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.691-697
    • /
    • 2003
  • This paper proposes a current differential relay for transformer protection that operates in accordance with a blocking method based on the difference-function of a differential current. For magnetic inrush and over-excitation, discontinuities in the first-difference function of the differential current arise at the points of inflection, which correspond to the start and end of each saturation period of the core. These discontinuities are converted into the pulses in the second- and third-difference functions of the differential current. The magnitudes of the pulses are large enough to detect saturation of the core. A blocking signal is issued if the magnitude of the third-difference function exceeds the threshold and is maintained for three quarters of a cycle. The performance of the relay is assessed under various conditions with magnetic inrush, internal faults and external faults. The proposed blocking method can improve significantly the operating time of a relay and achieve high sensitivity of a relay.

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.