• Title/Summary/Keyword: Over-estimation

Search Result 2,283, Processing Time 0.024 seconds

A study on the Channel Estimation Scheme in IEEE 802.11 Based System (IEEE 802.11 기반 시스템에서 채널추정에 관한 연구)

  • Kim, Hanjong
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.249-254
    • /
    • 2014
  • Wireless LAN system is evolving toward high-speed data transmission and more accurate channel estimation is necessarily required to improve communication performance. The PLCP preamble field in IEEE 802.11 based wireless MODEM consists of ten short symbols and two long symbols and is used for synchronization and channel estimation. The existing least square (LS) channel estimation is based on only two long training symbols. After estimating channel response separately by using each long training symbol, the final channel estimation is obtained by the average of each estimation. In this paper, a new channel estimation algorithm is presented to improve the performance of the existing LS channel estimation algorithm. From the fact that the short training symbol consists of 12 non-zero subcarriers, it gives us a clue of being able to additionally estimate at least one fourth of channel coefficients. The new LS algorithm performs channel estimation based on both two long training symbols and a short training symbol. The proposed LS algorithm shows a little bit performance improvement over the existing LS estimation and it will be able to be applied to the IEEE 802.11p WAVE system.

A Study on Driver's Perception over the Change of the Headlamp's Illuminance : 4. Development of the Standard and the Algorithm for Limiting Brightness Change (전조등 조도변동에 대한 운전자의 인식연구 : 4. 조도변동 기준 및 평가 알고리즘 개발)

  • Kim, Gi-Hoon;Kim, Huyn-Ji;An, Ok-Hee;Lim, Tae-Young;Min, Jae-Woong;Lim, Jun-Chae;Kang, Byung-Do;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.13-21
    • /
    • 2007
  • Based on the measurement results, a limit value for the change of the brightness of the headlamp, and an estimation algorithm considering the driver's safety was developed. Limitation values concerning being uncomfortable, blinking, and brightness change were indicated based on a subjective estimation of the psychological estimation. Also a safety estimation algorithm and a limitation value for stopping safely without the threat of obstacles to the vehicle were indicated by the perception measurement.

Relative Position Estimation using Kalman Filter Based on Inertial Sensor Signals Considering Soft Tissue Artifacts of Human Body Segments (신체 분절의 연조직 변형을 고려한 관성센서신호 기반의 상대위치 추정 칼만필터)

  • Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.237-242
    • /
    • 2020
  • This paper deals with relative position estimation using a Kalman filter (KF) based on inertial sensors that have been widely used in various biomechanics-related outdoor applications. In previous studies, the relative position is determined using relative orientation and predetermined segment-to-joint (S2J) vectors, which are assumed to be constant. However, because body segments are influenced by soft tissue artifacts (STAs), including the deformation and sliding of the skin over the underlying bone structures, they are not constant, resulting in significant errors during relative position estimation. In this study, relative position estimation was performed using a KF, where the S2J vectors were adopted as time-varying states. The joint constraint and the variations of the S2J vectors were used to develop a measurement model of the proposed KF. Accordingly, the covariance matrix corresponding to the variations of the S2J vectors continuously changed within the ranges of the STA-causing flexion angles. The experimental results of the knee flexion tests showed that the proposed KF decreased the estimation errors in the longitudinal and lateral directions by 8.86 and 17.89 mm, respectively, compared with a conventional approach based on the application of constant S2J vectors.

A Study on Weight Estimation Model of Floating Offshore Structures using Enhanced Genetic Programming Method (개선된 유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Um, Tae-Sub;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of direct measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model with the genetic programming was suggested for FPSO. The weight estimation model using genetic programming was established by fixing the independent variables based on this data. In addition, the correlation analysis was performed to make up for the weak points of genetic programming; it is apt to induce over-fitting when the number of data is relatively smaller than that of independent variables. That is, by reducing the number of variables through the analysis of the correlation between the independent variables, the increasing effect in the number of weight data can be expected. The reliability of the developed weight estimation model was within 2% of error rate.

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-hwi;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.70-72
    • /
    • 2019
  • For the safe and reliable operation of Lithium-ion batteries in Electric Vehicles (EVs) or Energy Storage Systems (ESSs), it is essential to have accurate information of the battery such as State of Charge (SOC). Many kinds of different techniques to estimate the SOC of the batteries have been developed so far such as the Kalman Filter. However, when it is applied to the multiple number of batteries it is difficult to maintain the accuracy of the estimation over all cells due to the difference in parameter value of each cell. Moreover the difference in the parameter of each cell may become larger as the operation time accumulates due to aging. In this paper a novel Deep Neural Network (DNN) based SOC estimation method for multi cell application is proposed. In the proposed method DNN is implemented to learn non-linear relationship of the voltage and current of the lithium-ion battery at different SOCs and different temperatures. In the training the voltage and current data of the Lithium battery at charge and discharge cycles obtained at different temperatures are used. After the comprehensive training with the data obtained with a cell resulting estimation algorithm is applied to the other cells. The experimental results show that the Mean Absolute Error (MAE) of the estimation is 0.56% at 25℃, and 3.16% at 60℃ with the proposed SOC estimation algorithm.

  • PDF

Robust Deep Age Estimation Method Using Artificially Generated Image Set

  • Jang, Jaeyoon;Jeon, Seung-Hyuk;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.643-651
    • /
    • 2017
  • Human age estimation is one of the key factors in the field of Human-Robot Interaction/Human-Computer Interaction (HRI/HCI). Owing to the development of deep-learning technologies, age recognition has recently been attempted. In general, however, deep learning techniques require a large-scale database, and for age learning with variations, a conventional database is insufficient. For this reason, we propose an age estimation method using artificially generated data. Image data are artificially generated through 3D information, thus solving the problem of shortage of training data, and helping with the training of the deep-learning technique. Augmentation using 3D has advantages over 2D because it creates new images with more information. We use a deep architecture as a pre-trained model, and improve the estimation capacity using artificially augmented training images. The deep architecture can outperform traditional estimation methods, and the improved method showed increased reliability. We have achieved state-of-the-art performance using the proposed method in the Morph-II dataset and have proven that the proposed method can be used effectively using the Adience dataset.

Time Constant Estimation of Induction Motor rotor using MRAS Fuzzy Control (MRAS 퍼지제어를 이용한 유도전동기 회전자의 시정수 추정)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa;Cha Young-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • This paper presents time a constant estimation of induction motor using MRAS(model reference adaptive system) fuzzy control. The rotor time constant is enabled from the estimation of rotor flux, which has two methods. One is to estimate it based on the stator current and the other is to integrate motor terminal voltage. If the parameters are correct, these two methods must yield the same results. But, for the case where the rotor time constant is over or under estimated, the two rotor nut estimation have different angles. Furthermore their angular positions are related to the polarity of rotor time constant estimation error. Based on these observation, this paper develops a rotor time constant update algorithm using fuzzy control. This paper shows the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Inverse active wind load inputs estimation of the multilayer shearing stress structure

  • Chen, Tsung-Chien;Lee, Ming-Hui
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.19-33
    • /
    • 2008
  • This research investigates the adaptive input estimation method applied to the multilayer shearing stress structure. This method is to estimate the values of wind load inputs by analyzing the active reaction of the system. The Kalman filter without the input term and the adaptive weighted recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the adaptive weighted recursive least square estimator to estimate the wind load input over time. This combined method can effectively estimate the wind loads to the structure system to enhance the reliability of the system active performance analysis. The forms of the simulated inputs (loads) in this paper include the periodic sinusoidal wave, the decaying exponent, the random combination of the sinusoidal wave and the decaying exponent, etc. The active reaction computed plus the simulation error is regard as the simulated measurement and is applied to the input estimation algorithm to implement the numerical simulation of the inverse input estimation process. The availability and the precision of the input estimation method proposed in this research can be verified by comparing the actual value and the one obtained by numerical simulation.

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.