• Title/Summary/Keyword: Over-Segmentation

Search Result 349, Processing Time 0.026 seconds

Cluster-Based Spin Images for Characterizing Diffuse Objects in 3D Range Data

  • Lee, Heezin;Oh, Sangyoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.377-382
    • /
    • 2014
  • Detecting and segmenting diffuse targets in laser ranging data is a critical problem for tactical reconnaissance. In this study, we propose a new method that facilitates the characterization of diffuse irregularly shaped objects using "spin images," i.e., local 2D histograms of laser returns oriented in 3D space, and a clustering process. The proposed "cluster-based spin imaging" method resolves the problem of using standard spin images for diffuse targets and it eliminates much of the computational complexity that characterizes the production of conventional spin images. The direct processing of pre-segmented laser points, including internal points that penetrate through a diffuse object's topmost surfaces, avoids some of the requirements of the approach used at present for spin image generation, while it also greatly reduces the high computational time overheads incurred by searches to find correlated images. We employed 3D airborne range data over forested terrain to demonstrate the effectiveness of this method in discriminating the different geometric structures of individual tree clusters. Our experiments showed that cluster-based spin images have the potential to separate classes in terms of different ages and portions of tree crowns.

Motion-Based Background Subtraction without Geometric Computation in Dynamic Scenes

  • Kawamoto, Kazuhiko;Imiya, Atsushi;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.559-562
    • /
    • 2003
  • A motion-based background subtraction method without geometric computation is proposed, allowing that the camera is moving parallel to the ground plane with uniform velocity. The proposed method subtracts the background region from a given image by evaluating the difference between calculated and model Hows. This approach is insensitive to small errors of calculated optical flows. Furthermore, in order to tackle the significant errors, a strategy for incorporating a set of optical flows calculated over different frame intervals is presented. An experiment with two real image sequences, in which a static box or a moving toy car appears, to evaluate the performance in terms of accuracy under varying thresholds using a receiver operating characteristic (ROC) curve. The ROC curves show, in the best case, the figure-ground segmentation is done at 17.8 % in false positive fraction (FPF) and 71.3% in true positive fraction (TPF) for the static-object scene and also at 14.8% in FPF and 72.4% In TPF for the moving-object scene, regardless if the calculated optical flows contain significant errors of calculation.

  • PDF

Development of An Inspection Method for Defect Detection on the Surface of Automotive Parts (자동차 부품 형상 결함 탐지를 위한 측정 방법 개발)

  • Park, Hong-Seok;Tuladhar, Upendra Mani;Shin, Seung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.452-458
    • /
    • 2013
  • Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.

The Effect of Consumer Factors on the Use of Mobile Internet (소비자 특성이 무선인터넷 이용에 미치는 영향에 관한 연구)

  • 박윤서
    • Korean Management Science Review
    • /
    • v.20 no.2
    • /
    • pp.61-80
    • /
    • 2003
  • At the end of 2002, about 91% of mobile telecommunications service subscribers have mobile phones with the mobile internet access function. However, despite the rapid spread of mobile internet phones, the number of real mobile internet users is very small. In this situation, this paper focuses on the effect of consumer demographics such as sex, age, job, etc. and consumer life-style on the use of mobile internet. This study tries to find the answers about the following questions ; 1) Which consumer demographic variables affect the use of mobile internet\ulcorner 2) How can we categorize the consumers with the mobile internet phones\ulcorner 3) What are the characteristics of categorized groups and is there any difference in using the mobile internet\ulcorner For this purpose, an off-line survey was conducted over 1,500 consumers with the mobile internet phones. This study concludes as follows ; The important demographic factors of the use of mobile internet are age, job, marriage, academic career and personal spending money. Totally viewed in the consumer demographics, the typical type of mobile internet users can be described as the young student. On the other hand, sex and family income variables do not significantly affect the use of mobile internet. And the mobile internet users can be categorized by the life-style into four distinct groups, which are named as the innovation oriented group, the practicality oriented group, the conservation oriented group, the ostentation oriented group. These findings show that the consumer life-style have various effects on the use of mobile internet.

Detection of Multiple Salient Objects by Categorizing Regional Features

  • Oh, Kang-Han;Kim, Soo-Hyung;Kim, Young-Chul;Lee, Yu-Ra
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.272-287
    • /
    • 2016
  • Recently, various and effective contrast based salient object detection models to focus on a single target have been proposed. However, there is a lack of research on detection of multiple objects, and also it is a more challenging task than single target process. In the multiple target problem, we are confronted by new difficulties caused by distinct difference between properties of objects. The characteristic of existing models depending on the global maximum distribution of data point would become a drawback for detection of multiple objects. In this paper, by analyzing limitations of the existing methods, we have devised three main processes to detect multiple salient objects. In the first stage, regional features are extracted from over-segmented regions. In the second stage, the regional features are categorized into homogeneous cluster using the mean-shift algorithm with the kernel function having various sizes. In the final stage, we compute saliency scores of the categorized regions using only spatial features without the contrast features, and then all scores are integrated for the final salient regions. In the experimental results, the scheme achieved superior detection accuracy for the SED2 and MSRA-ASD benchmarks with both a higher precision and better recall than state-of-the-art approaches. Especially, given multiple objects having different properties, our model significantly outperforms all existing models.

Wine Label Character Recognition in Mobile Phone Images using a Lexicon-Driven Post-Processing (사전기반 후처리를 이용한 모바일 폰 영상에서 와인 라벨 문자 인식)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Chil-Woo;Lee, Guee-Sang;Yang, Hyung-Jung;Lee, Myung-Eun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.546-550
    • /
    • 2010
  • In this paper, we propose a method for the postprocessing of cursive script recognition in Wine Label Images. The proposed method mainly consists of three steps: combination matrix generation, character combination filtering, string matching. Firstly, the combination matrix generation step detects all possible combinations from a recognition result for each of the pieces. Secondly, the unnecessary information in the combination matrix is removed by comparing with bigram of word in the lexicon. Finally, string matching step decides the identity of result as a best matched word in the lexicon based on the levenshtein distance. An experimental result shows that the recognition accuracy is 85.8%.

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.

Extraction of User Preference for Video Stimuli Using EEG-Based User Responses

  • Moon, Jinyoung;Kim, Youngrae;Lee, Hyungjik;Bae, Changseok;Yoon, Wan Chul
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1105-1114
    • /
    • 2013
  • Owing to the large number of video programs available, a method for accessing preferred videos efficiently through personalized video summaries and clips is needed. The automatic recognition of user states when viewing a video is essential for extracting meaningful video segments. Although there have been many studies on emotion recognition using various user responses, electroencephalogram (EEG)-based research on preference recognition of videos is at its very early stages. This paper proposes classification models based on linear and nonlinear classifiers using EEG features of band power (BP) values and asymmetry scores for four preference classes. As a result, the quadratic-discriminant-analysis-based model using BP features achieves a classification accuracy of 97.39% (${\pm}0.73%$), and the models based on the other nonlinear classifiers using the BP features achieve an accuracy of over 96%, which is superior to that of previous work only for binary preference classification. The result proves that the proposed approach is sufficient for employment in personalized video segmentation with high accuracy and classification power.

Priority Analysis of User Interface Evaluation Criteria for the Elderly Based on User's Lifestyle (라이프스타에 의한 노인 사용자 인터페이스 평가 우선 순위 분석)

  • Shin, Won-Kyoung;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2010
  • The purpose of this research is to analyze priority of the elderly user interface (UI) evaluation criteria based on user's lifestyle. Since the elderly population will occupy over 20% of the all Korean population in the near future, we need to know older users' needs and information because elderly users will be main customers in the super-aged society. This paper investigated the definition of elderly users and characteristics demographically, socio-economically, and physically/cognitively. A total of 238 questionnaires from older users were analyzed based on a segmentation table for the elderly developed by the previous study. According to factor analysis and cluster analysis, 6 types of lifestyle and 4 groups of the elderly users were classified, respectively. The priority of UI evaluation criteria for large electronic home appliances and mobile products was analyzed by analyses of variance (ANOVAs). The results indicated that the priority of (physical, emotional, and cognitive) UI criteria was significantly different among elderly users' lifestyles for both home appliances and mobile products. Consequently, the results of this study may help the company develop some competitive silver products and give higher satisfaction to the elderly users by suggesting different priority of UI evaluation criteria according to the target elderly group. The results may also contribute to revitalize national economy by significantly increasing senior market shares.

Pillar and Vehicle Classification using Ultrasonic Sensors and Statistical Regression Method (통계적 회귀 기법을 활용한 초음파 센서 기반의 기둥 및 차량 분류 알고리즘)

  • Lee, Chung-Su;Park, Eun-Soo;Lee, Jong-Hwan;Kim, Jong-Hee;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.428-436
    • /
    • 2014
  • This paper proposes a statistical regression method for classifying pillars and vehicles in parking area using a single ultrasonic sensor. There are three types of information provided by the ultrasonic sensor: TOF, the peak and the width of a pulse, from which 67 different features are extracted through segmentation and data preprocessing. The classification using the multiple SVM and the multinomial logistic regression are applied to the set of extracted features, and has achieved the accuracy of 85% and 89.67%, respectively, over a set of real-world data. The experimental result proves that the proposed feature extraction and classification scheme is applicable to the object classification using an ultrasonic sensor.