• Title/Summary/Keyword: Over Current Ground Relay

Search Result 15, Processing Time 0.021 seconds

Ground fault protective relaying schemes for DC traction power supply system (비접지 DC 급전계통에서 전류형 지락보호계전 방법)

  • 정상기;정락교;이성혁;김연수;조홍식
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

A Study on the Correction of Protection Relay of Temporary Electric Power Installations for Storage Tank (저장 탱크용 임시전력설비의 보호계전기 정정에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.562-567
    • /
    • 2020
  • In this paper, this is a study on the correction of protection relays to monitor temporary power facilities for storage tanks especially transformers to block and protect faults such as insulation breakdown. When an abnormality such as a short circuit or a ground fault occurs in the power system, it is important to detect this quickly cut off the device and equipment in which the fault occurred and separate it from the power system to correct the protection relay so that it does not interfere with power supply. In addition the fault current calculation that accurately applies the fault type and the cause of the fault for protection cooperation will be the most important factor in the correction of the protection relay. For protection coordination a study was conducted on the method of coordination for protection of power facility protection for storage tanks such as over current relay, ground over current relay, under voltage relay, and ground over voltage relay applied to temporary.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

A Study on the Over Current Relay Misoperation in Power System with Distributed Generations (분산전원 연계 계통에서의 과전류계전기 오동작에 관한 연구)

  • Park, Jong-Il;Lee, Kyebyung;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1705-1710
    • /
    • 2018
  • This paper deals with an analysis of the causes of over current relay(OCR) misoperation in power system with distributed generations(DG). In general, Y-D and Y-Y-D transformer connections are used for grid interconnection of DG. According to the interconnection guideline, the neutral point on Y side should be grounded. However, these transformer connections can lead to OCR misoperation as well as over current ground relay(OCGR) misoperation. Several researches have addressed the OCGR misoperation due to the interaction between transformer connections and zero-sequence voltage of distribution system. Recently, a misoperation of OCR at the point of DG interconnection to the utility system has been also reported. With increasing the interconnections of DG, such OCR as well as OCGR misoperations are expected to increase. In this paper, PSCAD/EMTDC modeling including DG interconnection transformer was performed and various case studies was carried out for identifying the cause of OCR misoperation.

A New Scheme to Improve High Impedance Fault Detection Capability Using Directional Over-Current Ground Relay (방향지락과전류계전기를 이용한 고저항지락사고 검출능력의 향상방안)

  • Lee, Seung-Jae;Lim, Jong-Yun;Kim, Il-Dong;Han, Kyoung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1000-1002
    • /
    • 1997
  • In this paper we proposes a scheme which can improve the detecting capability of the high impedance fault of the conventional distance relaying. It utilizes the directional ground overcurrent relay called HIFR together with the distance relay in order to secure the security and selectivity.

  • PDF

A Study on the Harmonics Effect of Disc-Type Over Current Ground Relay for Emergency Generator Protection (비상발전기 보호용 원판형 지락과전류계전기의 고조파영향에 관한 연구)

  • Kim, Kyung-Chul;Kho, Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.58-62
    • /
    • 2015
  • When an emergency generator is running, it supplies the power for critical loads. Generator protection requires the consideration of many abnormal conditions that may occur with generators include overvoltages and ground faults. Modern day power systems create harmonics within the electrical network that can have an impact upon the associated protective system. This paper focuses on the analysing of the cause and development of a solution for the malfunction of induction disc type overcurrent ground relay by generation of harmonics during emergency generator operation.

A Study of Over Voltage Ground Relay Operation Status at Opening of No-load Charged Cable (무부하 충전케이블 개방시 잔류전압에의한 과전압계전기 동작현상 연구)

  • Kim, Yeong-Han;Choi, Jong-Hyuck;Yoon, Ki-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.185-187
    • /
    • 2000
  • Fault current is flowed into 154/23kV M. Tr when line-to-ground fault occurs in power system. NGR(Neutral Grounded Reactor) is set up in order to prevent M.Tr fault by limiting magnitude of fault currents. Here, disconnection of NGR causes voltage increase by L-C resonance and line-to-ground fault in an unearthed system results in voltage increase at healthy phases. So Over Voltage Ground Relay(OVGR) is used for tripping M.Tr. Also, buses at second phases of M.Trs are all connected with section circuit breakers closed for the purpose of parallel operation and load shedding. In case of speciality buses are comprised of power cable in part for GIS connection. When no-load charged cable or bus is open by a section CB, unbalanced voltage charged on the bus is induced. Also discrepant opening time for circuit breakers on different phases gives rise to unbalanced zero sequence voltage. It was observed that this zero sequence voltage detected in the 22.9kV P.T (Potential Transformer for bus) mal-operated 59GT and tripped M.Tr. The zero sequence voltage of which vanishing time is longer than relay operating time came out by EMTDC simulation. Also, it was shown that the voltage waves of actual test are similar to those of simulation. On the basis of above results, R-C circuit complement on the relay without any effect on a power system made operating time of the relay longer than vanishing time of distorted waves. Consequently, operating time of the relay was delayed and magnitude of distorted waves was decreased by increasing time constant of the relay.

  • PDF

Analysis of effects of OCR in operation mode during fault ocuurs in Distribution System (배전계통 내 고장발생시 운전모드가 과전류계전기에 미치는 영향 분석)

  • Kim, Yong-Hwan;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.563-564
    • /
    • 2015
  • Recently, distributed generation using renewable energy resources have increased due to the limitation of conventional energy. To utilize these energy source effectively, a method of applying the energy storage system(ESS) in distribution system has been considered. In this paper, we simulated the one line-to-ground fault in power system with ESS. Based on these simulations, we analyzed the effect on Over Current Relay(OCR) operation. As a result, ESS operation modes result fault current fluctuation. Thus, OCR need to reset the pick up current. This paper analyze effect of ESS in distribution system according to OCR setting by using ElectroMagnetic Transient Program(EMTP).

  • PDF

Operating Characteristics of Protection Coordination Devices in Distribution System interconnected with Distributed Generation (분산전원이 연계된 배전계통에서 보호협조기기의 운용특성에 관한 연구)

  • Kim, So-Hee;Ji, Seong-Ho;Kim, Sun-Young;Rho, Dae-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.35-45
    • /
    • 2011
  • Recently, with the increasement of the interest about global warming, pollutions, and so on, a number of distributed generations(DGs) such as photovoltaic(PV) and wind power(WP), are interconnected with distribution systems. However, installing of DGs makes power flow changes such as directions, one-direction to bi-direction, and increasing/decreasing of fault current. Therefore, it may cause the critical problems. This paper proposes an evaluation algorithm for bi-directional protection coordination and presents an evaluation system for protection coordination based on this algorithm. Additionally, the result shows that the existing method may cause critical problems, and also the effectiveness of proposed method is verified.

A study on Optimal Operation of Protection Coordination Devices Evaluation System in Distribution System with Distributed Sources (분산전원이 연계된 배전계통에 보호협조기기 평가시스템의 최적운용에 관한 연구)

  • Ji, Sungho;Song, Bangwoon;Kim, Byungki;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2971-2978
    • /
    • 2013
  • Recently, with the world-wide issues about global warming and CO2 reduction, a number of distributed generations(DGs) such as photovoltaic(PV) and wind power(WP), are interconnected with the distribution systems. However, DGs can change the direction of the power flow from one-direction to bi-direction, and also change the direction and amount of fault current of existing distribution systems. Therefore, it may cause the critical problems on the power quality and protection coordination. This paper proposes an operation algorithm for bi-directional protection coordination using and apply it for the evaluation system for protection coordination. From the simulation results It is found that the proposed method is more effective and convenient than existing method.