• Title/Summary/Keyword: Ovarian tissue

Search Result 173, Processing Time 0.023 seconds

THE ANTICANCER EFFECT OF PACLITAXEL($Taxol^{(R)}$) IN ORAL SQUAMOUS CELL CARCINOMA XENOGRAFT (이종 이식된 구강편평세포 암종에서 Paclitaxel ($Taxol^{(R)}$)의 항암 효과)

  • Kim, Ki-Hwan;Kim, Chul-Hwan;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.95-110
    • /
    • 2006
  • The treatment for oral and maxillofacial carcinoma with chemotherapeutic agents is evaluated by many effective methods to reduce the tumor mass and cancer cell proliferation. However these chemotherapy have many serious side effects, such as bone marrow suppression, renal toxicity, G-I troubles. Therefore a possible approach to develop a clinically applicable chemotherapeutic agent is to screen anticancer activity of Taxol which is known to have very little side effect and have been used to breast cancer and ovarian carcinoma. Taxol is a new anti-microtubular anti-cancer agent extracted from the bark of the Pacific yew, Taxus brevifolia. Paclitaxel(Taxol) acts by promoting tubulin polymerization and over stabilizing microtubules agianst depolymerization. Despite the constant improvements of methods of the cancer treatment especially chemotherapy, the rate of cancer metastasis and recurrent are not decreased. Thus the investigation of new drug which have very little side effect and a possible clinically application continues to be a high priority. Considering that the Taxol have shown very effective chemotherapeutic agent with relatively low toxicity in many solid tumors, it deserves to evaluate its efficacy in oral squamous cell carcinoma. In this study, to investigate the in-vivo and in-vitro anti-cancer efficacy of Taxol in oral squamous cell carcinoma and lastly, the potency of Paclitaxel in the clinical application for oral cancer was evaluated. In vivo study, after HN22 cell line were xenografted in nude mice, the growth of tumor mass was observed, 3 mg/Kg taxol was injected intraperitoneally into nude mice containing tumor mass. The methods of these study were measurement of total volume of tumor mass, histopathologic study, immunohistochemical study, drug resistance assay, growth curve, MTT assay, flow cytometry, cDNA microarray in vivo and in vitro. The results were obtained as following. 1. The visual inspection of the experimental group showed that the volume of the tumor mass was slightly decreased but no significant difference with control group. 2. Ki-67 index was decreased at weeks 4 in experimental group. 3. Microscopic view of the xenografted tumor mass showed well differentiated squamous cell carcinoma and after Taxol injection, some necrotic tissue was seen weeks 4. 4. The growth curve of the tumor cells were decreased after 1day Taxol treatment. 5. According to the MTT assay, HN22 cell line showed relative drug resistancy above $5\;{\mu}g/ml$ concentrations of Taxol. 6. In drug resistance assay, the decrease of cell counts was seen relatively according to concentration. 7. In Flow cytometry, G2M phase cell arrests were seen in low concentration of the Taxol, while S phase cell arrests were seen in high concentration of the Taxol. 8. Using cDNA microarray technique, variable gene expression of ANGPTL4, TXNRD1, FAS, RRAGA, CTGF, CYCLINEA, P19, DUSP5, CEBPG, BTG1 were detacted in the oral squamous cell carcinoma cell after taxol treatment. In this study paclitaxel is effective against oral squamous cell carcinoma cell lines in vitro, but week effect was observed in vivo. So we need continuous study about anticancer effect of taxol in vivo in oral squamous cell carcinoma.

Immunohistochemical study on the atretic and the growing follicles after experimental superovulation in rats I. Number of follicles by superovulation (과배란 유기된 rat 난소에 퇴축난포와 성장난포에 대한 면역조직화학적 연구 I. 동원된 난포수에 대하여)

  • Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.71-78
    • /
    • 1997
  • This study was designed to investigate the number of the growing and mature follicles following gonadotrophin treatments for superovulation in mature rats. Eighteen mature rats (Sprague-Duwely, initially 190~230gm) were randomly alloted into 3 groups. One group was control group, another FSH-treated group was injected intramuscularly with 0.5 units of follicular stimulating hormone (FSH) / rat, and third PMS and HCG-treated group was intramuscularly injected with 20~25IU of pregnant mare serum (PMS) / rat and then at the 48 hrs later, with 20~25IU of human chorionic gonadotrophin (HCG) / rat. The uteri and ovaries of rats were collected and then were observed grossly and serial sections of paraffin embedding ovaries were stained with H-E. Number of ovarian follicles by following 3 grades of large, middle and small follicles from secondary and tertiary follicles were investigated by LM photography of preparations. Small follicles were classified as secondary follicles of preantral follicles with more than 2 layers of granulosa cells surrounding the oocyte and middle follicles were classified as secondary follicles with early signs of antral cavity or with more than one small cavity on either side of the oocytes and large follicles were classified as tertiary follicles with a single medium sized antral cavity or large well-formed antral cavity. In gross findings, the uteri were slightly swelling in FSH-treated group and markedly swelling or filled with fluid in the uterine lumen in PMS and HCG-treated group. In histological findings, the shape and size of the follicles were diverse in middle and large follicles of FSH-treated group and PMS and HCG-treated group, and proportion of atretic follicles was increased in FSH-treated group and PMS and HCG-treated group than those in control group. The uteri of FSH-treated group and PMS and HCG-treated group were hypertropied or filled with fluid in the lumens and walls of uteri. The wall tissue layers were flattened and their blood and lymph vessels were dilated. The mean number of follicle per ovary in control group were appeared to be $17.1{\pm}5.6$($14.0%{\pm}4.6%$), $37.8{\pm}9.1$($30.9{\pm}7.4%$) and $67.6{\pm}30.1$($55.2{\pm}24.6%$) respectively at large, middle and small follicles and total number of these 3 grade follicles were appeared to be $122.5{\pm}40.0$. The mean number of follicle per ovary in FSH-treated group were appeared to be $22.8{\pm}7.0$($17.4%{\pm}5.3%$), $43.4{\pm}6.6$($33.2{\pm}5.1%$) and $64.5{\pm}13.0$($49.3{\pm}9.9%$) respectively at large, middle and small follicles and total number of these 3 grade follicles were appeared to be $130.7{\pm}16.6$. The mean number of follicle per ovary in PMS and HCG-treated group were appeared to be $29.7{\pm}11.0$($16.3%{\pm}6.0%$), $61.9{\pm}17.2$($33.9{\pm}9.4%$) and $91.1{\pm}28.2$($49.9{\pm}15.4%$) respectively at large, middle and small follicles and total number of these 3 grade follicles were appeared to be $182.6{\pm}32.7$. The above findings reveal that large follicles were increased 29.8% in FSH-treated group and 73.7% in PMS and HCG-treated group than those in control group and in histologic findings, proportion of atretic follicles were more increased in ovaries with more number of more developing follicles.

  • PDF

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF