• Title/Summary/Keyword: Ovarian Functions

Search Result 57, Processing Time 0.031 seconds

Ultrastructure of Oocytes During Oogenesis and Oocyte Degeneration Associated with Follicle Cells in Female Sinonovacula constricta(BIVALVIA: PHARIDAE) in Western Korea

  • Chung, Ee-Yung;Ko, Cheol-Hwan;Kang, Hee-Woong;Choi, Ki-Ho;Jun, Je-Cheon
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.313-319
    • /
    • 2008
  • The ultrastructure of oocytes during oogenesis and oocyte degeneration associated with follicle cells in female Sinonovacula constricta(Lamarck, 1818) were investigated by electron microscope observations. Ovarian follicles are surrounded by a matrix of vesicular connective tissue cells(VCT cells). VCT cells contain large quantities of glycogen particles and several lipid droplets in their cytoplasm. It is suggested that VCT cells act as a source of nutrients for vitellogenesis during oogenesis. In early vitellogenic oocytes, several coated vesicles, which appear at the basal region of the oocyte, lead to the formation of membrane-bound vesicles via endocytosis. The uptake of nutritive materials in coated vesicles formed by endocytosis appears through the formation of coated pits on the oolemma during vitellogenesis. During the late stage of oogenesis, yolk precursors(yolk granules), mitochondria and lipid droplets are present in the cytoplasm of late vitellogenic oocytes. In particular, proteinaceous yolk granules containing several different components are intermingles and form immature yolk granules. In the mature oocyte, small immature yolk granules are intermingled and form large mature yolk granules. Vitellogenesis occurs through a process of autosynthesis, involving combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum in the cytoplasm of vitellogenic oocytes. The process of heterosynthesis is where extraovarian precursors are incorporated into oocytes by endocytosis at the basal region of early vitellogenic oocytes before the formation of the vitelline coat. Follicle cells appear to play an important role in vitellogenesis and oocyte degeneration. The functions of attached follicle cells to the oocyte during oocyte degeneration are phagocytosis and digestion of phagosomes originating from oocyte degeneration. After digestion of phagosomes, it is assumed that the function of follicle cells can permit a transfer of yolk precursors necessary for vitellogenesis and allows for the accumulation of glycogen and lipid during oocyte degeneration, which can be employed by vitellogenic oocytes. Follicle cells of S. constricta may possess a lysosomal system for induction of oocyte breakdown and might resorb phagosomes in the cytoplasm for nutrient accumulation during oocyte degeneration.

Differential Expression of Gangliosides in the Ovary and Uterus of Streptozotocin-Induced and db/db Diabetic Mice

  • Kim, Sung-Min;Kwak, Dong-Hoon;Kim, Sun-Mi;Jung, Ji-Ung;Lee, Dae-Hoon;Lee, Seoul;Jung, Kyu-Yong;Do, Su-Il;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.666-676
    • /
    • 2006
  • Gangliosides are widely distributed in mammalian cells and play important roles in various functions such as cell differentiation and growth control. In addition, diabetes and obesity cause abnormal development of reproductive processes in a variety of species. However, the mechanisms underlying these effects, and how they are related, are not fully understood. This study examined whether the differential expression of gangliosides is implicated in the abnormal follicular development and uterine architecture of streptozotocin (STZ)-induced and db/db diabetic mice. Based upon the mobility on high-performance thin-layer chromatography, mouse ovary consisted of at least five different ganglioside components, mainly gangliosides GM3, GM1, GD1a and GT1b, and diabetic ovary exhibited a significant reduction in ganglioside expression with apparent changes in the major gangliosides. A prominent immunofluorescence microscopy showed a dramatic loss of ganglioside GD1a expression in the primary, secondary and Graafian follicles of STZ-induced and db/db diabetic mice. A significant decrease in ganglioside GD3 expression was also observed in the ovary of db/db mice. In the uterus of STZ-induced diabetic mice, expression of gangliosides GD1a and GT1b was obviously reduced, but gangliosides GM1, GM2 and GD3 expression was increased. In contrast, the uterus of db/db mice showed a significant increase in gangliosides GM1, GD1a and GD3 expression. Taken together, a complex pattern of ganglioside expression was seen in the ovary and uterus of normoglycemic ICR and $db/^+$ mice, and the correspoding tissues in diabetic mice are characterized by appreciable changes of the major ganglioside expression. These results suggest that alterations in ganglioside expression caused by diabetes mellitus may be implicated in abnormal ovarian development and uterine structure.

The Expression of Apoptosis Related Genes bcl-2, TRPM-2 in Luteinized Human Granulosa Cells (황체화된 인간 과립세포에서 Apoptosis 관련 유전자인 bcl-2와 TRPM-2의 발현)

  • Lee, B.S.;Choi, E.A.;Chang, K.H.;Kim, J.Y.;Bae, S.W.;Park, K.H.;Cho, D.J.;Lee, K.;Kim, J.W.;Song, C.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.2
    • /
    • pp.267-271
    • /
    • 1997
  • Apoptosis, programmed cell death, is posulated to occur in granulosa cells in ovarian follicular atresia. bcl-2 gene serves as protector from apoptosis and, thus, is associated with increased cell survival. TRPM-2 gene expression has been implicated as a trigger of apoptosis in rat prostate, uterus and mammary gland. Our objective was to determine if bcl-2 and TRPM-2 are expressed in luteinized human GC and, therefore, have regulatory functions for apoptosis in GC. Human GC were obtained via oocyte retrival from the infertile patients stimulated with exogeneous gonadotropins while undergoing IVF. GC were isolated from follicular fluid using Percoll gradient centrifugation. The GC were further purified with anti-CD45 magnetic beads to remove contaminating WBC's. RT-PCR were performed to analyze the mRNA expression of bcl-2 and TRPM-2 in the GC. The PCR primers were designed to amplify a 195 bp fragment of bcl-2 and a 174 bp fragment of TRPM-2. The PCR products were electrophoresed on 4% agarose gel. Three separate experiments indicated that both bcl-2 and TRPM-2 are concurrently expressed in human GC. We cultured granulosa cells with FSH (1 ng/ml) for 1 day to investigate the relative changes of TRPM-2 mRNA level with RNAse protection assay. When we cultured GC with serum free medium for 1 day TRPM-2 mRNA level increased with 1.3 fold, however it was decreased 0.64 fold with FSH. Therefore we conclude that bcl-2 and TRPM-2 are concurrently expressed and that the interaction of their products may be involved in GC apoptosis. And TRPM-2 may be regulated with FSH.

  • PDF

Effect of Suckling on Progesterone Secretion during Lactation in the Rat (포유중인 Rat 의 Progesterone 분비에 대한 포유 효과)

  • 오석두;성환후;민관식;윤창현
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.2
    • /
    • pp.95-103
    • /
    • 1999
  • This experiment was conducted to investigate how the lactation regulation such as restricted-lactation and early weaning during the suckling period influences on ovarian functions and change in serum levels of progesterone in primiparous rats. All the rats were raised in the individual cage from a few days before parturition through the suckling period. The normal lactation(NL) groups were controled 8 pups. The restricted-lactation(RL) and weaned(W) groups were subdivided into 5 subgroups as RL0, RL5, RL10, RL15 and RL20 as well as W0, W5, W10, W15, and W20 according to the day of onset of suckling. The number of pups were regulated from 8 to 4 on experimental strating day in RL gropus, and also perfectly weaned on the each on-set day in W groups. The results obtained were summarized as follows: 1. During the whole suckling period of 25 days the pups in RL group grew significantly(P<005) faster than those in normal-lactation(NL) group. The pups in earlier RL group grew significantly(P<0.05) faster than those in later RL rats, and there was no found any significant difference in body weight of pups between RL20 and NL group. The gestation period and litter size were found to be 21.53$\pm$0.04 days and 13.75$\pm$0.07, respectively. 2. The estrous cycle was not expressed in the NL group through the whole suckling period. An irregular estrous cycle was found around day 20 in RL0 group, and the regular estrous cycles were exhibited continuously from day 10 in the day 0 weaned rats. 3. In the rats of NL group the serum progesterone concentration increased from 33.16$\pm$2.64ng/$m\ell$ on day 0 to 122.5$\pm$53.68 ng/$m\ell$ on day 10, and then decreased slightly to 97.30$\pm$3.21 ng/$m\ell$ on day 20, but then decreased abruptly. However, the serum level of progesterone decreased greatly(P<0.05) in 5 to 10 days following suckling restriction in the rats from which suckling began to be under restriction on day 0 or day 15. In the early weaning group the significant ( (P<0.05) decrease in progesterone concentration was found similarly in 48 hours following weaning in all the rats weaned on day 0 through day 20. It was suggested that lactation stimulation is a very pivotal on the function of ovary.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionicgonadotropin Receptor

  • Min, K. S.
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.10-12
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$-subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was. efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to consist of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t63I or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632-653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17-fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF