• 제목/요약/키워드: Output-only system Identification

검색결과 77건 처리시간 0.024초

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

시스템 동정을 통한 구조물의 결함 탐지 (Structural Damage Detection through System Identification)

  • 고봉환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1223-1228
    • /
    • 2006
  • This paper presents an experimental investigation of a recently developed Kronecker Product (KP) method to determine the type, location, and intensity of structural damage from an identified state-space model of the system. Although this inverse problem appears to be highly nonlinear, the system mass, stiffness, and damping matrices are identified through a series of transformations, and with the aid of the Kronecker product, only linear operations are involved in the process. Since a state-space model can be identified directly from input-output data, an initial finite element model and/or model updating are not required. The test structure is a two-degree-of-freedom torsional system in which mass and stiffness are arbitrarily adjustable to simulate various conditions of structural damage. This simple apparatus demonstrates the capability of the damage detection method by not only identifying the location and the extent of the damage, but also differentiating the nature of the damage. The potential applicability of the KP method for structural damage identification is confirmed by laboratory test.

  • PDF

DRNN을 이용한 최적 난방부하 식별 (Optimal Heating Load Identification using a DRNN)

  • 정기철;양해원
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권10호
    • /
    • pp.1231-1238
    • /
    • 1999
  • This paper presents an approach for the optimal heating load Identification using Diagonal Recurrent Neural Networks(DRNN). In this paper, the DRNN captures the dynamic nature of a system and since it is not fully connected, training is much faster than a fully connected recurrent neural network. The architecture of DRNN is a modified model of the fully connected recurrent neural network with one hidden layer. The hidden layer is comprised of self-recurrent neurons, each feeding its output only into itself. In this study, A dynamic backpropagation (DBP) with delta-bar-delta learning method is used to train an optimal heating load identifier. Delta-bar-delta learning method is an empirical method to adapt the learning rate gradually during the training period in order to improve accuracy in a short time. The simulation results based on experimental data show that the proposed model is superior to the other methods in most cases, in regard of not only learning speed but also identification accuracy.

  • PDF

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

엔진마운트 능동제어용 시스템인식기술 (System Identification with Completely Unknown Periodic Disturbances in Active Engine Mount Control Application)

  • 이수철
    • 한국산업정보학회논문지
    • /
    • 제4권1호
    • /
    • pp.58-62
    • /
    • 1999
  • 본 논문은 엔진마운트에서 주기적인 미지의 외란에서 나타나는 시스템의 입출력으로부터의 시스템 동특성을 인식할 수 있는 응용가능성을 보여 주고자 한다. 일반적으로 외란 진동과 파장형태는 확실히 알려져 있지 않고 임의적으로 발생되고 있다. 단지 제어량인 입력과 외란이 섞여 있는 출력측정량만이 시스템인식을 위하여 사용될 뿐이다. 보다 일반화되어 개발된 시스템인식기술 알고리즘은 승용차 능동엔진마운트의 진동제어를 위하여 능동제어에 앞선 미지의 주기적외란을 포함한 동특성시스템에서의 수학적 모의시험을 통하여 시스템인식기술의 완벽성을 나타내고 있다.

  • PDF

입출력 비연성을 이용한 액추에이터 모니터링 기술 개발 (Development of Actuator Monitoring Technique through Decoupled Input-Output)

  • 고봉환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.301-305
    • /
    • 2005
  • This paper introduces a novel technique to detect and isolate the failures of multiple actuators connected to a system. Failure of actuator considered in this study could be any type of erroneous input that is different from commanded one. The interaction matrix technique allows the development of input-output equations that are only influenced by one target input. These input-output equations serve as an effective toot to monitor the integrity of each actuator regardless of the status of the other actuators. The method is capable of real-time actuator failure detection and isolation under any type of input excitation. The laboratory experiment using 8-bay NASA truss structure verifies the feasibility of the proposed method.

  • PDF

압전 소자 기반 구동 유닛의 히스테리시스 보상 강인 제어기 설계 (A Robust Control System Design for Compensating Hysteresis of a Piezoelectric Actuator-based Actuation Unit)

  • 김화수;김종원
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.324-330
    • /
    • 2012
  • In this paper, we presents a robust control system design for compensating hysteresis of a piezoelectric actuator-based actuation unit. First, the dynamics between the input voltage and the output displacement of the actuation unit are unravelled via a non-parametric system identification method. From the dynamic characteristics of those experimental transfer functions, a parametric model is then derived, whose dynamics match those of the non-parametric ones under various conditions on input voltages. A robust controller is constructed on the basis of this parametric model in order not only to effectively compensate the hysteresis of the actuation unit but also to guarantee the robust stability. Extensive experiments show that the proposed robust control system successfully mitigate the effect of the hysteresis and improve the tracking capability of the actuation unit.

Identification of Backlash Nonlinear System by use of M-sequence and correlation

  • Kashiwagi, H.;Rong, Li.;Harada, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.470-470
    • /
    • 2000
  • This paper describes a new method of identifcation of backlash nonlinear systems by use of M-sequence correlation method. In this method, we can obtain not only Volterra kernels of up to 3rd order of the nonlinear system, but also the width of the backlash element from observing the crosscorrelation between the input and the output. Here strictly speaking, a multi-valued nonlinear system such as backlash element can not be expressed by Volterra kernel representation mathematically. But in practice, we encounter many cases where it is difficult to treat them mathematically but they can be controlled from experience. So we here dare to suppose that backlash nonlinear system can be approximated by Volterra kernel representation. Simulations are carried out on a nonlinear system consisting of linear part plus backlash element. And Volterra kernels are measured. The output calculated from the observed Volterra kernels is in good agreement wi th the actual output. And we show that we can obtain the width of backlash element, which is one of the most important parameters, by observing the maximum value of crosscorrelation function between the input M-sequence and the output.

  • PDF

비선형 동적 시스템의 파라미터 산정을 위한 주파수 영역 볼테라 모델의 이용 (Parameter Identification of Nonlinear Dynamic Systems using Frequency Domain Volterra model)

  • 백인열;권장섭
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.33-42
    • /
    • 2005
  • 비선형 함수로 모델링되는 동적 시스템의 비선형 파라미터를 결정하기 위하여 주파수 영역 볼테라 모델을 적용하는 연구를 수행하였다. 시간영역의 1차, 2차, 3차 전달함수에 해당하는 주파수 영역의 볼테라 핵함수를 비선형 파라미터 산정 과정에 3차 비선형 항까지 포함시켰다. Schetzen의 방법으로 시스템의 비선형 미분방정식에 적합한 볼테라 급수 표현식을 정하고, 이로부터 유도되는 비선형 전달함수를 입력 출력 관계식에 사용하였다. 관찰된 입력을 비선형 주파수 영역 모델에 대입하여 계산한 출력과 관찰된 출력의 차이로 오차를 정의한 후 오차를 최소화 시키는 시스템 파라미터의 값을 구하였다. 예제를 통하여 선형 주파수 구간 뿐만 아니라 2차 혹은 3차 비선형이 지배적인 주파수 범위 대에서 볼테라 모델이 충분한 정확성과 수렴성을 가지며 인식된 파라미터는 실제 값과 잘 일치함을 확인할 수 있었다.

Health monitoring of a historical monument in Jordan based on ambient vibration test

  • Bani-Hani, Khaldoon A.;Zibdeh, Hazem S.;Hamdaoui, Karim
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.195-208
    • /
    • 2008
  • This paper summarizes the experimental vibration-based structural health monitoring study on a historical monument in Jordan. In this work, and within the framework of the European Commission funded project "wide-Range Non-Intrusive Devices Toward Conservation of Historical Monuments in the Mediterranean Area", a seven and a half century old minaret located in Ajloun (73 km north of the capital Amman) is studied. Because of their cultural value, touristic importance and the desire to preserve them for the future, only non-destructive tests were allowed for the experimental investigation of such heritage structures. Therefore, after dimensional measurements and determination of the current state of damage in the selected monument, ambient vibration tests are conducted to measure the accelerations at strategic locations of the system. Output-only modal identification technique is applied to extract the modal parameters such as natural frequencies and mode shapes. A Non-linear version of SAP 2000 computer program is used to develop a three-dimensional finite element model of the minaret. The developed numerical model is then updated according to the modal parameters obtained experimentally by the ambient-vibration test-results and the measured characteristics of old stone and deteriorated mortar. Moreover, a parametric identification method using the N4Sid state space model is employed to model the dynamic behavior of the minaret and to build up a robust, immune and noise tolerant model.