• Title/Summary/Keyword: Output torque enhancement

Search Result 2, Processing Time 0.016 seconds

Method for Improving Overmodulation Performance of an Inverter for the Enhanced Output Torque of AC Motors (교류 전동기의 출력 토크 향상을 위한 인버터의 과변조 성능 개선 방법)

  • Jeong, Hye-In;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.273-278
    • /
    • 2019
  • This study proposes a method for improving the overmodulation performance of a three-phase inverter to obtain an enhanced output torque for the AC motors. In the inverter-fed AC motor drives, the output torque of the motor can be enhanced by utilizing the overmodulation region as well as the linear modulation regions of the inverter. The overmodulation method is used for this overmodulation operation of the inverter. However, the voltage gain, the ratio of the output voltage of the inverter to the reference voltage achieved by the conventional overmodulation methods becomes nonlinearly smaller than unity. Therefore, the effect of improving the output torque of the AC motors is insignificant even when the overmodulation region is utilized. In this study, we propose a method that improves the overmodulation performance of the inverter by compensating the limited amount of the reference voltage in the overmodulation operation to enhance the output torque of the AC motors. The effectiveness of the proposed method is verified through the simulations and experiments with an 800 W permanent magnet synchronous motor.

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.