• Title/Summary/Keyword: Output ripple voltage

Search Result 373, Processing Time 0.028 seconds

Ultra-fast Adaptive Frequency-controlled Hysteretic Buck Converter for Portable Devices

  • Kim, Kwang-Ho;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.615-623
    • /
    • 2016
  • The paper describes a hysteretic buck converter including a differentiator and an adaptive hysteresis window controller. Differentiating the feedback signal achieves ultra-fast switching of the buck converter. The adaptive hysteresis window control allows a monotonous operation with predictable noise spectrum, and gives way to efficient design for variable supply and output voltages. The measurement results in a $0.13-{\mu}m$ CMOS process indicated that the switching frequency became double times higher, and the voltage ripple was reduced by up to 69%. They also indicated that the normalized switching frequency variation was reduced by 74% with variable $V_{DD}$ and by 63% with variable $V_{OUT}$. The power efficiency was improved by 3.5% depending on loading condition.

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

A Study on High Performance Converter Topology for Hydrogen Gas Generation Electrolysis System

  • Kang, Tae-Won;Go, Yu-Ran;Suh, Yong-Sug;Jeong, Jun-Ik;Rho, Do-Hawn
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.196-197
    • /
    • 2010
  • This paper investigates a high performance converter topology for hydrogen gas generation electrolysis system. The proposed converter topology consists of full-bridge inverter, medium frequency transformer, and diode rectifier. Hydrogen gas generation electrolysis process considered in the paper is analyzed and characterized by its equivalent circuit. The electrolysis cell is modeled as effective resistance, capacitance, inductance, and internal emf voltage source. The proposed converter topology provides enhanced efficiency of hydrogen gas generation process under the operating condition of dc output voltage with high frequency ripple on it. The high performance operation of proposed converter is confirmed through the simulation with the electrolysis cell considered in the equivalent circuit model.

  • PDF

STUDY ON CONTROL SCHEME FOR IMPROVEMENT OF THREE PHASE CURRENT-CONTROLLED PWM RECTIFIER (3상 전류제어형 PWM 정류기의 특성 개선을 위한 제어기법에 관한 연구)

  • Park, Min-Ho;Choi, Jae-Ho;Ji, Jun-Keun;Kang, Jun-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.367-370
    • /
    • 1987
  • A high-performance PWM technique in current-controlled AC to DC converter is introduced. This converter used information about source voltage vectors to make good PWM switching pattern that it can control the DC output voltage with reduced ripple factor and rapid response. In addition to reduction of harmonic current, AC input power factor can be controlled to leading or lagging by current reference. Simulation was made based on analytical approach and it showed a good agreement with theory.

  • PDF

Design of High Voltage Cascaded NPC H-Bridge Inverter (고전압 Cascaded NPC H-Bridge 인버터 설계)

  • Hyun, Seung-Wook;Noh, Yong-Su;Hyon, Byong Jo;Choi, Jun-Hyuk;Kim, Jin-Hong
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.290-291
    • /
    • 2018
  • This paper proposed design method of DC link capasitor and leakage inductance of transformer with high voltage cascaded NPC H-bridge inverter. DC link capacitor is designed based on the ripple power between input AC power and output AC power, and leakage inductance of transformer is designed based on FFT table of unipola PWM with NPC H-bridge inverter. The proposed design method is verified by simulation results of 6.6[kV], 1.2[MW] Cascaded NPC H-bridge inverter.

  • PDF

A Characteristic Analysis of ZVS-Half Bridge Type DC-DC Converter with Source Division Capacitor capacity variety (전원분할 커패시터 용량변화에 따른 ZVS-HB형 DC-DC 컨버터의 특성해석)

  • Oh, Kyeong-Seob;Nam, Seung-Sik;Kim, Dong-Hee;Ro, Chae-Gyun;Bae, Yeong-Ho;Ro, Chol-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1318-1320
    • /
    • 2000
  • In this paper, DC/DC converter has been composed of a capacitor which has not only a source division function but a resonant function instead of a previous source division capacitor. In addition to the proposed circuit is introduced a soft switching technique (ZVS). The proposed paper certified that theoretical waveforms are equal to experiment waveforms of power, output voltage, voltage ripple etc. and to be possible to control using division ratio.

  • PDF

A Single-Phase Current-Source Bidirectional Converter for V2G Applications

  • Han, Hua;Liu, Yonglu;Sun, Yao;Wang, Hui;Su, Mei
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.458-467
    • /
    • 2014
  • In this paper, a single-phase current-source bidirectional converter topology for V2G applications is proposed. The proposed converter consists of a single-phase current-source rectifier (SCSR) and an auxiliary switching network (ASN). It offers bidirectional power flow between the battery and the grid in the buck or boost mode and expands the output voltage range, so that it can be compatible with different voltage levels. The topology structure and operating principles of the proposed converter are analyzed in detail. An indirect control algorithm is used to realize the charging and discharging of the battery. Finally, the semiconductor losses and system efficiency are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

A Study on the Single-Stage AC/DC PFC TTFC(TWO-Transistor Forward Converter) (단일전력단 AC/DC PFC TTFC(Two-Transistor Forward Converter)에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1432-1434
    • /
    • 2005
  • Single-stage converters are simpler and less expensive than convention two-stage converters. It can be a challenge, however, to design single-stage converters to satisfy certain key criteria such as input power factor, primary-side do bus voltage, and output voltage ripple. This is especially true for higher power single-stage AC/DC TTFC(Two-Transistor Forward Converter).

  • PDF

A Novel Integrated Battery Charger Structure for Multiple Charge and V2G application for Electric Vehicles (전기자동차의 다중충전 및 V2G 응용을 위한 새로운 통합 배터리 충전기구조)

  • Vu, Hai-Nam;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.13-14
    • /
    • 2016
  • This paper has introduces a novel Integrated On-board Charger (IOBC) to reduce the size, weight and cost of power conversion stages in Electric Vehicles (EVs). The IOBC is composed of an OBC and a low voltage dc-dc converter (LDC). The IOBC includes a bidirectional ac-dc converter and a bidirectional full-bridge converter with an active clamp circuit. The LDC converter is a hybrid topology combining an active clamped full-bridge converter and a forward converter derived from the Weinburg converter topology. Unlike conventional OBC, the proposed IOBC is compact and the LDC converter of it can achieve a higher efficiency. In addition, the LDC converter of the proposed IOBC can achieve high step-down voltage conversion ratio, no circulating current, no reverse recovery current of the rectifier diodes and small ripple current of output inductor on the auxiliary battery. A 1kW hardware of the LDC converter is implemented to verify the performances of the proposed IOBC.

  • PDF

A New Solar Energy Conversion System Implemented using Single Phase Inverter (새로운 방식의 단상 인버터를 이용한 태양광 시스템 구현)

  • Hong Jeng-Pyo;Kim Tae-Hwa;Won Tae-Hyun;Kwon Soon-Jae;Hong Soon-Ill;Kim Jong-Dal
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper proposed method of maximum power point tracking using boost converter for a connected single phase inverter with photovoltaic system. The maximum power point tracking control is based on generated circuit control MOSFET switch of boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of the system. Furthermore, the generation control circuit attenuates low-frequency ripple voltage, which is caused by the full-bridge inverter, across the photovoltaic modules. Consequently, the output power of system is increased due to the increase in average power generated by the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

  • PDF