• Title/Summary/Keyword: Output Matching Circuit

Search Result 165, Processing Time 0.023 seconds

Design of temperature sensing circuit measuring the temperature inside of IC (IC내부 온도 측정이 가능한 온도센서회로 설계)

  • Kang, Byung-jun;Kim, Han-seul;Lee, Min-woo;Son, Sang-hee;Jung, Won-sup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.838-841
    • /
    • 2012
  • To avoid the damage to circuit and performance degradation by temperature changes, temperature sensing circuit applicable to the IC is proposed in this paper. Temperature sensing is executed by PTAT circuit and power saving mode is activated by internal switch if internal temperature is in high. Also, characteristics of current matching are increased by using current mirror and cascode circuits. From the simulation results, this circuit is operating in action mode if input signal is in low. But it immediately goes into power saving mode if output signal is in high. It shows the output voltage of 1V at $75^{\circ}C$ and 1.75V at $125^{\circ}C$ in action mode and near 0 V(0V~ 7uV) in power saving mode.

  • PDF

Design and Fabrication of two-stage Low Noise Amplifier for 24㎓ (24㎓ 2단 저잡음 증폭기의 설계 및 제작)

  • 한석균
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1374-1379
    • /
    • 2003
  • In this paper, twoㆍstage low noise amplifier(LNA) for 24㎓ is designed and fabricated using NE450284C HJ-FET of NEC CO. In order to get noise figure and input VSWR to be wanted it is considered input VSWR and noise figure simultaneously in matching-circuit designing. The fabricated two-stage low noise mph u has the gai of 16.6㏈, input VSWR of 1.6, and output VSWR under 1.5.

A Study on the Fabrication Technologies for the 23 GHz 2-Stage LNA (23 GHz대 2단 저잡음 증폭기의 제작기술에 관한 연구)

  • 안동식;장동필
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.52-60
    • /
    • 1997
  • A 23GHz 2-stage LNA was designed using MPIE numerical analysis and microwave CAD EEsof softwares. The basic circuit was designed by EEsof tools but analyzed more precisely using numerical MPIE tools and modified. The matching sections of the input and output terminals were designed with paralledl coupled filter-type lines, these matching sections perform impedance matching and DC blocking, more over have the advantages of small discontinuities and small errors in the design process. The FET chip is directly attached to the ground metal. The designed LNA gives 15.2dB gain and 2.7dB noise figure. without considering 1.8dB loss of connectors. These results validate our design process and matching schemes and fabrication technologies over the 20GHz frequency range.

  • PDF

Capacitively Coupled Radio Frequency Discharge System for Excitation of Gas Laser (기체레이저의 여기를 위한 용량결합고주파(ccrf) 방전시스템)

  • Choi, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • The ccrf-discharge has in comparison with the hollow-cathode discharge and DC-discharge some advantages: Simple design of the tube and homogeneous plasma. The ccrf-discharge was researched with the goal, to use on the excitation of the gas laser. In this work a rf-exciting system was planned and developed. With it a homogeneous discharge was produced in the cw operation. To supply the rf-power with the frequency 13.56[MHz] effectively in the discharge, laser tube were used with inner diameter of 5[mm] and the specially developed rf-electrodes. A matching circuit was composed also. Thereby the impedance of the discharge tube was adjusted to the 50[$\Omega$] output resistance of the rf-source.

Analog Predistortion High Power Amplifier Using Novel Low Memory Matching Topology

  • Kim, Jang-Heon;Woo, Young-Yun;Cha, Jeong-Hyeon;Hong, Sung-Chul;Kim, Il-Du;Moon, Jung-Hwan;Kim, Jung-Joon;Kim, Bum-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.147-153
    • /
    • 2007
  • This paper represents an analog predistortion linearizer for the high power amplifier with low memory effect. The high power amplifier is implemented using a 90-W peak envelope power(PEP) LDMOSFET at 2.14-GHz and an envelope short matching topology is applied at the active ports to minimize the memory effect. The analog predistortion circuit comprises the fundamental path and the cuber and quintic generating circuits, whose amplitudes and phases can be controlled independently. The predistortion circuit is tested for two-tone and wide-band code division multiple access(WCDMA) 4FA signals. For the WCDMA signal, the adjacent channel leakage ratios(ACLRs) at 5 MHz offset are improved by 12.4 dB at average output powers of 36 dBm and 42 dBm.

C-Band Internally Matched GaAs Power Amplifier with Minimized Memory Effect (Memory Effect를 최소화한 C-대역 내부 정합 GaAs 전력증폭기)

  • Choi, Woon-Sung;Lee, Kyung-Hak;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1081-1090
    • /
    • 2013
  • In this paper, a C-band 10 W power amplifier with internally matched input and output matching circuit is designed and fabricated. The used power transistor for the power amplifier is GaAs pHEMT bare-chip. The wire bonding analysis considering the size of the capacitor and the position of transistor pad improves the accurate design. The matching circuit design with the package effect using EM simulation is performed. To reduce the unsymmetry of IMD3 in 2-tone measurement due to the memory effect, the bias circuit minimizing the memory effect is proposed and employed. The measured $P_{1dB}$, power gain, and power added efficiency are 39.8~40.4 dBm, 9.7~10.4 dB, and 33.4~38.0 %, respectively. Adopting the proposed bias circuit, the difference between the upper and lower IMD3 is less than 0.76 dB.

Design of 24-GHz Power Amplifier for Automotive Collision Avoidance Radars (차량 추돌 방지 레이더용 24-GHz 전력 증폭기 설계)

  • Noh, Seok-Ho;Ryu, Jee-Youl
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.117-122
    • /
    • 2016
  • In this paper, we propose 24-GHz CMOS radio frequency (RF) power amplifier for short-range automotive collision avoidance radars. This circuit contains common source stage with inter-stages conjugate matching circuit as a class-A mode amplifier. The proposed circuit is designed using TSMC $0.13-{\mu}m$ mixed signal/RF CMOS process ($f_T/f_{MAX}=120/140GHz$). It operates at the supply voltage of 2V, and it is designed to have high power gain, low insertion loss and low noise figure in the low supply voltage. To reduce total chip area, the circuit used transmission lines instead of the bulky real inductor. The designed CMOS power amplifier showed the smallest chip size of $0.1mm^2$, the lowest power consumption of 40mW, the highest power gain of 26.5dB, the highest saturated output power of 19.2dBm and the highest maximum power-added efficiency of 17.2% as compared to recently reported results.

Design and fabrication of Power Amplifier with HBT for IMT-2000 Handsets (IMT-2000 단말기용 HBT 전력증폭기 설계 및 제작)

  • 정동영;박상완;정봉식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.276-283
    • /
    • 2003
  • In this paper, a 2-stage power amplifier(PA) for IMT-2000 handset has been designed and fabricated using SiGe HBT, which has excellent frequency characteristics and linearity, to reduce size and weight instead of existing linearization techniques. DC I-V characteristics and S-parameter of SiGe HBT were simulated by Agilent circuit simulator(ADS), with large signal Gummel-Poon nonlinear circuit model. Then the output and interstage matching circuits were designed to satisfy the high power condition and the high gain condition, respectively. The experimental results showed output power of 27.1dBm and ACLR of 20dB, PAE of 34%, and linear power gain of 18.9dB over frequency ranges from 1920MHz to 1980MHz.

Design of a New RF Buit-In Self-Test Circuit for Measuring 5GHz Low Noise Amplifier Specifications (5GHz 저잡음 증폭기의 성능검사를 위한 새로운 고주파 Built-In Self-Test 회로 설계)

  • Ryu Jee-Youl;Noh Seok-Ho;Park Se-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1705-1712
    • /
    • 2004
  • This paper presents a new low-cost RF Built-In Self-Test (BIST) circuit for measuring transducer voltage gain, noise figure and input impedance of 5.25GHz low noise amplifier (LNA). The BIST circuit is designed using 0.18${\mu}{\textrm}{m}$ SiGe technology. The test technique utilizes input impedance matching and output transient voltage measurements. The technique is simple and inexpensive. Total chip size has additional area of about 18% for BIST circuit.