• Title/Summary/Keyword: Output Energy

Search Result 2,829, Processing Time 0.026 seconds

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

A Study on Growth of Intermetallic Compounds Layer of Photovoltaic Module Interconnected by Multi-wires under Damp-heat Conditions (고온고습시험에 의한 멀티 와이어 PV 모듈의 금속 간 화합물 층의 성장에 관한 연구)

  • Moon, Ji Yeon;Cho, Seong Hyeon;Son, Hyoung Jin;Jun, Da Yeong;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.124-128
    • /
    • 2020
  • Output power of photovoltaic (PV) modules installed outdoors decreases every year due to environmental conditions such as temperature, humidity, and ultraviolet irradiations. In order to promote the installation of PV modules, the reliability must be guaranteed. One of the important factors affecting reliability is intermetallic compounds (IMC) layer formed in ribbon solder joint. For this reason, various studies on soldering properties between the ribbon and cell have been performed to solve the reliability deterioration caused by excessive growth of the IMC layer. However, the IMC layer of the PV module interconnected by multi-wires has been studied less than using the ribbon. It is necessary to study soldering characteristics of the multi-wire module for improvement of its reliability. In this study, we analyzed the growth of IMC layer of the PV module with multi-wire and the degradation of output power through damp-heat test. The fabricated modules were exposed to damp-heat conditions (85 ºC and 85 % relative humidity) for 1000 hours and the output powers of the modules before and after the damp-heat test were measured. Then, the process of dissolving ethylene vinyl acetate (EVA) as an encapsulant of the modules was performed to observe the IMC layer. The growth of IMC layer was evaluated using OM and FE-SEM for cross-sectional analysis and EDS for elemental mapping. Based on these results, we investigated the correlation between the IMC layer and output power of modules.

A Study on the Development of Discontinuous Energy Generation System for Power Compensation Using Microcontroller (마이크로컨트롤러를 이용한 전력보상용 불연속 에너지 발생 시스템 개발에 대한 연구)

  • 이정일;임중열;차인수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1031-1035
    • /
    • 2002
  • The development of the solar and the wind power energy is necessary since the future alternative energies should have no pollution and no limitation. currently power generation system of MW scale has been developed, but it still has a few faults that its operation depends on with the weather condition. In order to solve these existing problems. combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However. since the combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring was added. In an experiment. when output of system gets lower than 12V(charging voltage), additional power was from the stored rotational energy of spiral spring.

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

Operation of Photovoltaic Generation System with Battery and Electrolyzer (Battery와 Electrolyzer를 이용한 태양광 발전시스템 운영)

  • Gang, Gi-Hyeok;Kim, Yun-Seong;Loc, Nguyen Khanh;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1994-2000
    • /
    • 2008
  • The output power of photovoltaic(PV) generation system is strongly affected by weather conditions. To make up for the defect of solar energy, energy storages such as battery and electrolyzer are usually integrated with photovoltaic cell. This paper focuses on the way to store energy surplus with battery and electrolyzer and to provide energy with battery. Photovoltaic generation system is modeled with PV cell, DC/DC converter, DC/AC inverter, battery and electrolyzer. The operation algorithm to regulate PV output power with battery and electrolyzer is suggested. The simulation results show that battery and electrolyzer effectively cooperate with each other to compensate the fluctuation of PV generation system.

Renewable Source and Hybrid System Modeling for Smart Grid (스마트그리드를 위한 신재생에너지원과 하이브리드시스템 모델링)

  • Cho, Jae-Hoon;Hong, Won-Pyo;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.109-121
    • /
    • 2010
  • Recently, smart grid for solving energy problems have been receiving growing attention. Also, renewable energy sources such as photovoltaic and fuel cell as future energy for realizing smart grid have been widely studied. On the other hand, hybrid structures have been proposed since the output power of these renewable energy sources is usually dependent on weather conditions. This paper proposes a hybrid system involving a proper photovoltaic in the hybrid system, Polymer Elecrolyte Membrane Fuel Cell with water electrolyzer and ultracapacitor. The results of simulation and output of the proposed model are established and analysed by Matlab/Simulink and SimPowerSystems.

CFD Analysis of a Counter-rotating Tubular Type Micro-Turbine with Diffuser (디퓨져를 이용한 튜블러형 상반전 수차의 CFD 성능해석)

  • Lee, Nakjoong;Park, Jihoon;Hwang, Young-Ho;Kim, Youtaek;Lee, Youngho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.205.2-205.2
    • /
    • 2011
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this study, in order to acquire design data of counter-rotating tubular type micro-turbine, output power, head, and efficiency characteristics due to the diffuser.

  • PDF

An Assessment of the Energy Consumption & CO2 Emission during the Construction Stage of Government Building using the Input-Output Analysis (산업연관분석법을 통한 공공청사 신축공사단계의 에너지 소비량 및 CO2 발생량 평가)

  • Choi, Young-Hun;Lee, Sang-Beom;Song, Ho-San
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.149-150
    • /
    • 2011
  • Recently, Goverment's Energy-saving policy in Korea as 'Green Growth' is very remarkable effort. By intensive poliicies, the private is encouraged to participate in policy. Especially, it is very important in the field of architecture and we have to work for construction of law system. However, these efforts of the government buildings for energy efficiency in use stage is as mandatory system that may occur in the construction phase and the enviromental impact of greenhouse gas reductions is not affected. For this reason, Assess the amount of the energy consumption and CO2 emissioont of Government Buildings in 2010 ordered by PPS(Public Procurement Service) in the construction phase and suggest to recognize the need for legal restrictions.

  • PDF

Performance Characteristic Anaysis of Micro Hydropower Sites (Micro급 수력발전입지의 성능특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.498-501
    • /
    • 2012
  • A methodology to evaluate the performance analysis for micro hydropower sites has been studied. It consists of two main parts; flow duration function which can describe micro hydropower sites and performance analysis to estimate the output characteristics of micro hydropower plants. The output performance characteristics for Magok stream was analyzed, using developed model. Also, primary design specifications such as design flowrate, installed capacity, operational rate and annual electricity production were estimated and dicussed. Additionally, it was found that the developed model in this study is useful tool to estimate feasibility assessment for micro hydropower sites.

  • PDF

A Numerical Analysis for Optimum Design of Multi-Stage Amplifier System of High Power Dye Laser (고출력 색소 레이저의 다단 증폭 시스템의 최적설계에 관한 수치해석)

  • 고도경
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.281-288
    • /
    • 1993
  • We have investigated the output characteristics and optimal conditions of a multi-stage amplifier system of Rhodamine 6G dye laser. The parameters in this simulation work were the beam diameter of the dye laser oscillator, the size of dye cell, the dye concentration, the number of stages in the amplifier system, and the pumping energy ratio of each amplifier at given pump energy. As a result, the output energy 10 mJ and the conversion efficiency of 40% in the two stage amplifier system were obtained with the pumping energy of 25mJ and the oscillator energy of 0.01 mJ.

  • PDF