• Title/Summary/Keyword: Outlier removal

Search Result 57, Processing Time 0.026 seconds

Improvement of PM Forecasting Performance by Outlier Data Removing (Outlier 데이터 제거를 통한 미세먼지 예보성능의 향상)

  • Jeon, Young Tae;Yu, Suk Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.747-755
    • /
    • 2020
  • In this paper, we deal with outlier data problems that occur when constructing a PM2.5 fine dust forecasting system using a neural network. In general, when learning a neural network, some of the data are not helpful for learning, but rather disturbing. Those are called outlier data. When they are included in the training data, various problems such as overfitting occur. In building a PM2.5 fine dust concentration forecasting system using neural network, we have found several outlier data in the training data. We, therefore, remove them, and then make learning 3 ways. Over_outlier model removes outlier data that target concentration is low, but the model forecast is high. Under_outlier model removes outliers data that target concentration is high, but the model forecast is low. All_outlier model removes both Over_outlier and Under_outlier data. We compare 3 models with a conventional outlier removal model and non-removal model. Our outlier removal model shows better performance than the others.

Fast Outlier Removal for Image Registration based on Modified K-means Clustering

  • Soh, Young-Sung;Qadir, Mudasar;Kim, In-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • Outlier detection and removal is a crucial step needed for various image processing applications such as image registration. Random Sample Consensus (RANSAC) is known to be the best algorithm so far for the outlier detection and removal. However RANSAC requires a cosiderable computation time. To drastically reduce the computation time while preserving the comparable quality, a outlier detection and removal method based on modified K-means is proposed. The original K-means was conducted first for matching point pairs and then cluster merging and member exclusion step are performed in the modification step. We applied the methods to various images with highly repetitive patterns under several geometric distortions and obtained successful results. We compared the proposed method with RANSAC and showed that the proposed method runs 3~10 times faster than RANSAC.

Multiple Imputation Reducing Outlier Effect using Weight Adjustment Methods (가중치 보정을 이용한 다중대체법)

  • Kim, Jin-Young;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.635-647
    • /
    • 2013
  • Imputation is a commonly used method to handle missing survey data. The performance of the imputation method is influenced by various factors, especially an outlier. The removal of the outlier in a data set is a simple and effective approach to reduce the effect of an outlier. In this paper in order to improve the precision of multiple imputation, we study a imputation method which reduces the effect of outlier using various weight adjustment methods that include the removal of an outlier method. The regression method in PROC/MI in SAS is used for multiple imputation and the obtained final adjusted weight is used as a weight variable to obtain the imputed values. Simulation studies compared the performance of various weight adjustment methods and Monthly Labor Statistic data is used for real data analysis.

Improving the Accuracy of Image Matching using Various Outlier Removal Algorithms (다양한 오정합 제거 알고리즘을 이용한 영상정합의 정확도 향상)

  • Lee, Yong-Il;Kim, Jun-Chul;Lee, Young-Ran;Shin, Sung-Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.667-675
    • /
    • 2009
  • Image matching is widely applied in image application areas, such as remote sensing and GIS. In general, the initial set of matching points always includes outlier which affect the accuracy of image matching. The purpose of this paper is to develop a robust approach for outlier detection and removal in order to keep accuracy in image matching applications. In this paper we use three automatic outlier detection techniques of backward matching and affine transformation, and RANSAC(RANdom SAmple Consensus) algorithm. Moreover, we calculate overlapping apply and steps block-based processing for fast and efficient image matching in pre-processing steps. The suggested approach in this paper has been applied to real frame image pairs and the results have been analyzed in terms of the robustness and the efficiency.

Efficient outlier removal algorithm for real-time panoramic stitching (실시간 파노라마 합성에서의 효과적인 outlier 제거 방법)

  • Kim, Beom Su;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.513-516
    • /
    • 2011
  • 기존의 실시간 파노라마 합성 알고리즘에서는 매칭점과 입력 영상에서의 outlier를 구분하고 제거하기가 어렵기 때문에 노이즈가 많은 영상 또는 반복적인 패턴이 많은 영상에서 왜곡이 쉽게 발생하는 문제가 있다. 따라서 본 논문에서는 기존의 실시간 파노라마 합성 프레임웍에서 실시간 합성 조건을 만족시키면서 효과적으로 매칭점과 입력 영상에서의 outlier를 제거하는 방법을 제안한다. 이를 위해서 선형 모델에서 outlier을 제거하는 데 주로 사용되는 RANSAC 알고리즘을 실시간 파노라마 합성에서 사용되는 비선형 모델에 적용 가능하도록 수정하고 속도 향상을 위해서 사용되는 모델의 파라미터를 줄이는 방법을 제안한다. 이를 통하여 매칭점 중에 존재하는 outiler를 제거하고 전체 매칭점 중에서 inlier 비율을 이용하여 입력되는 영상시퀀스에서 outlier 영상을 제거하는 방법을 제안한다. 실험 결과 기존의 방법에 비해서 합성 결과의 왜곡이 줄어드는 것을 확인하였다.

  • PDF

Improved LTE Fingerprint Positioning Through Clustering-based Repeater Detection and Outlier Removal

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.369-379
    • /
    • 2022
  • In weighted k-nearest neighbor (WkNN)-based Fingerprinting positioning step, a process of comparing the requested positioning signal with signal information for each reference point stored in the fingerprint DB is performed. At this time, the higher the number of matched base station identifiers, the higher the possibility that the terminal exists in the corresponding location, and in fact, an additional weight is added to the location in proportion to the number of matching base stations. On the other hand, if the matching number of base stations is small, the selected candidate reference point has high dependence on the similarity value of the signal. But one problem arises here. The positioning signal can be compared with the repeater signal in the signal information stored on the DB, and the corresponding reference point can be selected as a candidate location. The selected reference point is likely to be an outlier, and if a certain weight is applied to the corresponding location, the error of the estimated location information increases. In order to solve this problem, this paper proposes a WkNN technique including an outlier removal function. To this end, it is first determined whether the repeater signal is included in the DB information of the matched base station. If the reference point for the repeater signal is selected as the candidate position, the reference position corresponding to the outlier is removed based on the clustering technique. The performance of the proposed technique is verified through data acquired in Seocho 1 and 2 dongs in Seoul.

Big Data Smoothing and Outlier Removal for Patent Big Data Analysis

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.77-84
    • /
    • 2016
  • In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.

Outlier Detection and Treatment for the Conversion of Chemical Oxygen Demand to Total Organic Carbon (화학적산소요구량의 총유기탄소 변환을 위한 이상자료의 탐지와 처리)

  • Cho, Beom Jun;Cho, Hong Yeon;Kim, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 2014
  • Total organic carbon (TOC) is an important indicator used as an direct biological index in the research field of the marine carbon cycle. It is possible to produce the sufficient TOC estimation data by using the Chemical Oxygen Demand(COD) data because the available TOC data is relatively poor than the COD data. The outlier detection and treatment (removal) should be carried out reasonably and objectively because the equation for a COD-TOC conversion is directly affected the TOC estimation. In this study, it aims to suggest the optimal regression model using the available salinity, COD, and TOC data observed in the Korean coastal zone. The optimal regression model is selected by the comparison and analysis on the changes of data numbers before and after removal, variation coefficients and root mean square (RMS) error of the diverse detection methods of the outlier and influential observations. According to research result, it is shown that a diagnostic case combining SIQR (Semi - Inter-Quartile Range) boxplot and Cook's distance method is most suitable for the outlier detection. The optimal regression function is estimated as the TOC(mg/L) = $0.44{\cdot}COD(mg/L)+1.53$, then determination coefficient is showed a value of 0.47 and RMS error is 0.85 mg/L. The RMS error and the variation coefficients of the leverage values are greatly reduced to the 31% and 80% of the value before the outlier removal condition. The method suggested in this study can provide more appropriate regression curve because the excessive impacts of the outlier frequently included in the COD and TOC monitoring data is removed.

Impact of Outliers on the Statistical Measures of the Environmental Monitoring Data in Busan Coastal Sea (이상자료가 연안 환경자료의 통계 척도에 미치는 영향)

  • Cho, Hong-Yeon;Lee, Ki-Seop;Ahn, Soon-Mo
    • Ocean and Polar Research
    • /
    • v.38 no.2
    • /
    • pp.149-159
    • /
    • 2016
  • The statistical measures of the coastal environmental data are used in a variety of statistical inferences, hypothesis tests, and data-driven modeling. If the measures are biased, then the statistical estimations and models may also be biased and this potential for bias is great when data contain some outliers defined as extraordinary large or small data values. This study aims to suggest more robust statistical measures as alternatives to more commonly used measures and to assess the performance these robust measures through a quantitative evaluation of more typical measures, such as in terms of locations, spreads, and shapes, with regard to environmental monitoring data in the Busan coastal sea. The detection of outliers within the data was carried out on the basis of Rosner's test. About 5-10% of the nutrient data were found to contain outliers based on Rosner's test. After removal (zero-weighting) of the outliers in the data sets, the relative change ratios of the mean and standard deviation between before and after outlier-removal conditions revealed the figures 13 and 33%, respectively. The variation magnitudes of skewness and kurtosis are 1.36 and 8.11 in a decreasing trend, respectively. On the other hand, the change ratios for more robust measures regarding the mean and standard deviation are 3.7-10.5%, and the variation magnitudes of robust skewness and kurtosis are about only 2-4% of the magnitude of the non-robust measures. The robust measures can be regarded as outlier-resistant statistical measures based on the relatively small changes in the scenarios before and after outlier removal conditions.

A Fast Image Matching Method for Oblique Video Captured with UAV Platform

  • Byun, Young Gi;Kim, Dae Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • There is growing interest in Vision-based video image matching owing to the constantly developing technology of unmanned-based systems. The purpose of this paper is the development of a fast and effective matching technique for the UAV oblique video image. We first extracted initial matching points using NCC (Normalized Cross-Correlation) algorithm and improved the computational efficiency of NCC algorithm using integral image. Furthermore, we developed a triangulation-based outlier removal algorithm to extract more robust matching points among the initial matching points. In order to evaluate the performance of the propose method, our method was quantitatively compared with existing image matching approaches. Experimental results demonstrated that the proposed method can process 2.57 frames per second for video image matching and is up to 4 times faster than existing methods. The proposed method therefore has a good potential for the various video-based applications that requires image matching as a pre-processing.