• 제목/요약/키워드: Outlier Prediction

검색결과 62건 처리시간 0.021초

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

고차원 데이터에서 One-class SVM과 Spectral Clustering을 이용한 이진 예측 이상치 탐지 방법 (A Binary Prediction Method for Outlier Detection using One-class SVM and Spectral Clustering in High Dimensional Data)

  • 박정희
    • 한국멀티미디어학회논문지
    • /
    • 제25권6호
    • /
    • pp.886-893
    • /
    • 2022
  • Outlier detection refers to the task of detecting data that deviate significantly from the normal data distribution. Most outlier detection methods compute an outlier score which indicates the degree to which a data sample deviates from normal. However, setting a threshold for an outlier score to determine if a data sample is outlier or normal is not trivial. In this paper, we propose a binary prediction method for outlier detection based on spectral clustering and one-class SVM ensemble. Given training data consisting of normal data samples, a clustering method is performed to find clusters in the training data, and the ensemble of one-class SVM models trained on each cluster finds the boundaries of the normal data. We show how to obtain a threshold for transforming outlier scores computed from the ensemble of one-class SVM models into binary predictive values. Experimental results with high dimensional text data show that the proposed method can be effectively applied to high dimensional data, especially when the normal training data consists of different shapes and densities of clusters.

신경망 이론과 Mahalanobis Distance 이상치 탐색방법을 이용한 고강도 콘크리트 강도 예측 모델 개발에 관한 연구 (Modeling of Strength of High Performance Concrete with Artificial Neural Network and Mahalanobis Distance Outlier Detection Method)

  • 홍정의
    • 산업경영시스템학회지
    • /
    • 제33권4호
    • /
    • pp.122-129
    • /
    • 2010
  • High-performance concrete (HPC) is a new terminology used in concrete construction industry. Several studies have shown that concrete strength development is determined not only by the water-to-cement ratio but also influenced by the content of other concrete ingredients. HPC is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed at demonstrating the possibilities of adapting artificial neural network (ANN) to predict the comprresive strength of HPC. Mahalanobis Distance (MD) outlier detection method used for the purpose increase prediction ability of ANN. The detailed procedure of calculating Mahalanobis Distance (MD) is described. The effects of outlier compared with before and after artificial neural network training. MD outlier detection method successfully removed existence of outlier and improved the neural network training and prediction performance.

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

Corner Outlier Artifacts를 감소시키기 위한 HEVC 필터링 방법 (The Filtering Method to Reduce Corner Outlier Artifacts in HEVC)

  • 고경환;이영렬
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.313-320
    • /
    • 2017
  • HEVC 표준에 적용된 인루프 필터링 방법인 De-blocking filter와 SAO(Sample Adaptive Offset)은 영상의 블록화 현상(Blocking artifacts)과 ringing artifacts를 효과적으로 제거하여 부호화 효율 및 주관적 화질 향상을 달성하였다. 하지만, 인루프 필터링 사용에도 불구하고, Corner outlier artifacts라 불리는 블록 경계의 모서리 부분에서 발생하는 2차원 형태의 블록화 현상은 쉽게 제거하지 못하는 문제점을 보인다. 본 논문에서는 Corner outlier 픽셀 탐색 및 판단과정, 해당 outlier 픽셀의 필터링 방법을 통하여 이러한 artifacts를 감소시키는 방법을 제안한다. 실험결과, 제안하는 방법은 화면간 예측에서 약간의 압축 효율 향상을 보였으며, 특히 영상의 주관적 화질 측면에서 개선된 효과를 나타내었다.

A Note on Bayesian Prediction Analysis for the Rayleigh Model in the presence of Outliers

  • 고정환;김영훈
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2003년도 춘계학술대회
    • /
    • pp.171-176
    • /
    • 2003
  • This paper deals with the problem of predicting order statistics in samples from a Rayleigh population when an outlier is present. Bayesian predictive distribution and prediction bounds of the p-th order statistics is obtained where an outlier of type $\theta\delta$ is present. In this connection, some identies are derived.

  • PDF

Big Data Smoothing and Outlier Removal for Patent Big Data Analysis

  • Choi, JunHyeog;Jun, Sunghae
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권8호
    • /
    • pp.77-84
    • /
    • 2016
  • In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • 제22권2호
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

주기 패턴을 이용한 센서 네트워크 데이터의 이상치 예측 (Outlier prediction in sensor network data using periodic pattern)

  • 김형일
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.433-441
    • /
    • 2006
  • Because of the low power and low rate of a sensor network, outlier is frequently occurred in the time series data of sensor network. In this paper, we suggest periodic pattern analysis that is applied to the time series data of sensor network and predict outlier that exist in the time series data of sensor network. A periodic pattern is minimum period of time in which trend of values in data is appeared continuous and repeated. In this paper, a quantization and smoothing is applied to the time series data in order to analyze the periodic pattern and the fluctuation of each adjacent value in the smoothed data is measured to be modified to a simple data. Then, the periodic pattern is abstracted from the modified simple data, and the time series data is restructured according to the periods to produce periodic pattern data. In the experiment, the machine learning is applied to the periodic pattern data to predict outlier to see the results. The characteristics of analysis of the periodic pattern in this paper is not analyzing the periods according to the size of value of data but to analyze time periods according to the fluctuation of the value of data. Therefore analysis of periodic pattern is robust to outlier. Also it is possible to express values of time attribute as values in time period by restructuring the time series data into periodic pattern. Thus, it is possible to use time attribute even in the general machine learning algorithm in which the time series data is not possible to be learned.

고혈압 예측을 위한 이상치 탐지 알고리즘 및 데이터 통합 기법 (An Outlier Detection Algorithm and Data Integration Technique for Prediction of Hypertension)

  • 홍고르출;김미혜 ;송미화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.417-419
    • /
    • 2023
  • Hypertension is one of the leading causes of mortality worldwide. In recent years, the incidence of hypertension has increased dramatically, not only among the elderly but also among young people. In this regard, the use of machine-learning methods to diagnose the causes of hypertension has increased in recent years. In this study, we improved the prediction of hypertension detection using Mahalanobis distance-based multivariate outlier removal using the KNHANES database from the Korean national health data and the COVID-19 dataset from Kaggle. This study was divided into two modules. Initially, the data preprocessing step used merged datasets and decision-tree classifier-based feature selection. The next module applies a predictive analysis step to remove multivariate outliers using the Mahalanobis distance from the experimental dataset and makes a prediction of hypertension. In this study, we compared the accuracy of each classification model. The best results showed that the proposed MAH_RF algorithm had an accuracy of 82.66%. The proposed method can be used not only for hypertension but also for the detection of various diseases such as stroke and cardiovascular disease.